TutorialLens: Authoring Interactive Augmented Reality Tutorials Through Narration and Demonstration

Junhan Kong
The Information School,
University of Washington
Seattle, WA, USA
junhank@uw.edu

Dena Sabha
Human-Centered Design and Engineering, University of Washington
Seattle, WA, USA
dsabha19@uw.edu

Jeffrey P. Bigham
Human-Computer Interaction Institute, School of Computer Science, Carnegie Mellon University
Pittsburgh, PA, USA
jbigham@cs.cmu.edu

Amy Pavel
Computer Science and Engineering, University of Michigan
Ann Arbor, MI, USA
apavel@cs.cmu.edu

Anhong Guo
Human-Computer Interaction Institute, School of Computer Science, Carnegie Mellon University
Pittsburgh, PA, USA
anhong@umich.edu

ABSTRACT
Exploring unfamiliar devices and interfaces through trial and error can be challenging and frustrating. Existing video tutorials require frequent context switching between the device showing the tutorial and the device being used. While augmented reality (AR) has been adopted to create user manuals, many are inflexible for diverse tasks, and usually require programming and AR development experience. We present TutorialLens, a system for authoring interactive AR tutorials through narration and demonstration. To use TutorialLens, authors demonstrate tasks step-by-step while verbally explaining what they are doing. TutorialLens automatically detects and records 3D finger positions and guides authors to capture important changes of the device. Using the created tutorials, TutorialLens then provides AR visual guidance and feedback for novice device users to complete the demonstrated tasks. TutorialLens is automated, friendly to users without AR development experience, and applicable to a variety of devices and tasks.

CCS CONCEPTS
• Human-centered computing → Interactive systems and tools.

KEYWORDS
Augmented reality, tutorials, dynamic interfaces, authoring tools, narration, demonstration, computer vision.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

1 INTRODUCTION
Using unfamiliar devices and interfaces has been a pervasive challenge – purchasing tickets at a subway station in an unfamiliar city; trying to print a document at a new workplace; parking or sending packages with self-service kiosks. In these situations, especially with complicated tasks that might involve many possible user interactions, trial and error can be challenging, frustrating and time-consuming.

To help users interact with these interfaces, various tutorial systems have been created, but most are not sufficient to meet diverse user needs and scenarios. Traditional user manuals are usually too information-heavy and require high cognitive load; On-device instructions usually lack context on which part of the devices to look at and interact with, such as where to place physical objects (like inserting paper checks to ATM machines). AR and video tutorials have also been created to provide more context to users, yet video tutorials require frequent context switching between the device playing the video and the device a user is trying to interact with, and give little feedback on whether users correctly followed the instructions. Moreover, existing AR tutorials are often designed for a single interface (sometimes by the manufacturers) thus hard to generalize to a variety of tasks. Additionally, authoring AR tutorials often requires expertise such as programming and 3D modeling. Thus, creating interactive, contextual, and easy-to-use AR tutorials for a variety of tasks remains a challenge.

To identify the key challenges and needs in authoring user tutorials, we first conducted a two-part formative study. For the first part, we selected 12 tutorial videos on a variety of devices, iteratively created a code book focusing on the hierarchy of and relationship between user actions and device feedback, and coded the videos using the code book. However, since many of these videos were created by expert content creators and involved heavy post-hoc editing, they were not representative of a regular user’s workflow when creating tutorials to share with their friends and family. To
better investigate the process and challenges when creating a video tutorial in-situ, we then conducted a user study with 10 participants. From the video coding and user study findings, we extracted key insights, including allowing hands-free interactions, providing sufficient context to novice device users, being clear and concise with instructions, enabling easy editing of tutorials, and showing potential errors and failures. Some of these key insights informed our design decisions of TutorialLens.

Next, we present TutorialLens, a system for authoring interactive AR tutorials through voice narration and user demonstration. TutorialLens is designed for users who want to author device-oriented AR tutorials, where 1) the device is operated via touchscreen or physical controls, e.g. buttons, knobs, and sliders, 2) changes are visible via screen updates, and 3) the operations are initiated using hand/fingers. TutorialLens has two major modes: the authoring mode which allows authors to create AR user tutorials through narration and demonstration, and the access mode which guides novice device users to access unfamiliar interfaces with the created tutorials. In the authoring mode, after a few setup steps to configure the device control panel and finger markers, tutorial authors are first guided to demonstrate tasks step-by-step while verbally explaining what they are doing. During the demonstration, their hand movements and gestures are captured and recorded through 3D finger location tracking. Their narration are being transcribed in real time using automatic speech recognition. Then at the end of each step, they are asked to capture an update on the interface (e.g., changes on the display). After demonstrating and capturing all the steps, authors can review and edit descriptions of each step in a summary table, which concludes the authoring process. In the access mode, novice users are guided by TutorialLens to complete the demonstrated tasks. To start the guidance, novice users first point their phone cameras to the display screen of the device. Once the current step is identified by TutorialLens, users receive AR visual guidance of 3D finger movements overlaid on the device in the AR scene to complete the step. TutorialLens recognizes the current task progress by matching and identifying the previously captured interface changes within the camera’s field of view, and retrieves the corresponding finger movements during demonstration. With the AR guidance, semantic text instructions, and audio feedback, TutorialLens guides a novice user to complete the demonstrated tasks step-by-step.

We conducted a user study to understand the effectiveness of TutorialLens, and showed that TutorialLens can effectively guide authors without AR development experiences to create usable tutorials to help novice device users complete tasks on a variety of devices. TutorialLens is friendly to authors without AR development experience, allows easy editing of tutorials, and is applicable to a wide variety of devices and tasks.
2 RELATED WORK

2.1 Video and Step-by-Step Tutorial Systems

Prior work has utilized various techniques and strategies in authoring image- and video-based tutorials to automate the authoring process and improve user experience. Pause-and-Play proposed by Pongnumkul et al. [29] reduces the burden of users having to manually pause and play tutorials by detecting important events in videos and linking them to the target application. DemoCut proposed by Chi et al. [6] which segments screen capture videos, applies video compositing techniques and highlights interactions through mouse trails. AniCode by Wang et al. [35] generates video tutorials in consumers’ visual content based on authors’ prior encoding of video animation.

StateLens by Guo et al. [15] uses a state diagram to represent a user interface and to guide visually-impaired users to interact with touchscreens step-by-step, and their work inspired the modeling of user interactions into action sequences in this work. However, these systems are purely screen-based and provide instructions in 2D. In contrast, our work provides rich contextual information in the 3D space and supports a variety of user interactions such as pressing buttons, swiping or sliding, turning knobs, and potentially grabbing physical objects and more complicated gestures.

2.2 AR Tutorials

In recent years, AR has been widely adopted to scaffold interactions with interfaces and assist users with completing certain tasks. Blattgerste et al.’s work [3] compared conventional and AR instructions for manual assembly tasks and found that compared to paper instructions, users made fewer errors with AR assistance. As AR tutorials provide more context switching between the device playing the video and the device a user is trying to interact with. Instead, our work lets novices create AR tutorials that are anchored to task steps and physical locations to show relevant instructions in context.

Step-by-step tutorial systems have been shown to be effective for complex user interfaces and complicated tasks, especially for users who do not prefer trial and error [22]. Research has been done in creating step-by-step tutorial systems, such as MixT by Chi et al. [6] which segments screen capture videos, applies video compositing techniques and highlights interactions through mouse trails. AniCode by Wang et al. [35] generates video tutorials in consumers’ visual content based on authors’ prior encoding of video animation.

StateLens by Guo et al. [15] uses a state diagram to represent a user interface and to guide visually-impaired users to interact with touchscreens step-by-step, and their work inspired the modeling of user interactions into action sequences in this work. However, these systems are purely screen-based and provide instructions in 2D. In contrast, our work provides rich contextual information in the 3D space and supports a variety of user interactions such as pressing buttons, swiping or sliding, turning knobs, and potentially grabbing physical objects and more complicated gestures.

2.3 AR Authoring Tools

To make AR authoring easier for non-expert users, research has been done in creating general-purpose AR authoring tools for users without programming and AR development experiences, such as Seichter et al.’s CompoSAR [31] and Gimeno et al.’s work [13] on easy-to-use AR authoring tools for industrial applications. Lots of prior research focused on lowering the barrier of AR authoring and prototyping by providing a predefined set of 3D objects for authors to choose from [2, 11, 21, 24], while others further lowers this barrier by utilizing various detection and tracking methods to automatically identify user actions. AuthAR proposed by Whitlock et al. [36] achieves this by tracking materials and screwdrivers in assembly tasks. DuploTrack by Gupta et al. [16] uses depth information for automatic detection of the assembly process. Prior work has also leveraged visual and depth information or a mix of them to track points of interactions [6, 12, 14, 27, 28, 32]. In addition to creating tools that enable AR authoring, prior work has also evaluated the effect of various factors during AR tutorial authoring, and proposed guidelines for selecting appropriate techniques and information-presentation methods in AR tutorial creation [33]. Compared to prior tools that track specific objects and are thus application-specific, our work enables a large class of tasks by tracking finger movements and customized objects with dense feature points. Additionally, rather than solely focusing on visual guidance, our work allows the creation of tutorials through author narration and demonstration, thus providing multi-modal guidance for novice users to complete tasks.

3 FORMATIVE STUDY

To identify the key challenges and needs in authoring AR content, we conducted a formative study consisting of two parts: a video coding analysis of 12 tutorial videos on YouTube, and a remote user study with 10 participants for observing and understanding how they create tutorial videos.

3.1 Video Coding Analysis

The goal of our video coding analysis was to understand how existing tutorials are structured, and to summarize the types of feedback and guidance used to convey a step in the tutorial.
We selected 12 tutorial videos by searching on YouTube, intentionally covering a wide variety of devices from public kiosks (e.g. parking meters, airport check-in) to home and workplace devices (e.g. coffee machines, smart fridges). We also chose videos long enough (average length ~5 mins) to have sufficient detail. Having a variety of devices and tutorials allowed us to have a comprehensive understanding of how a video tutorial might be made due to the complexity of the device. We marked the user interactions and device state transitions, as well as any additional editing done to the video. We also transcribed the videos and observed how authors demonstrated and described the process.

Through preliminary coding of the 12 videos as well as refining the codes, we iteratively created a code book summarizing the hierarchy of types of feedback on devices and given by creators of tutorials. The code book was organized into two sections: Analyzing what components of the device prompted a novice user to proceed to the next step, and analyzing what components the creator of the tutorial video did to guide a novice user in their tutorial video. We also identified seven major components in our code book that were shared between the device and creator parts: 3D object, text, audio, content, video type and interactions.

With the code book we created, we applied the codes to the video transcripts and observations, and then organized our findings into a few key insights included in Section 3.3. We have included our code book in the supplemental material, which contains more extensive information on the hierarchies we created for different types of feedback appearing in video tutorials. We have also included an example of a coded video using our code book in our supplemental materials, which we visualize in Figure 2.

3.3 Key Insights

We organized our video coding findings and responses from our user study using an affinity diagram, and extracted key insights below, which we used to inform the design of TutorialLens.

3.3.1 Hands-Free Interactions

Participants mentioned that it was difficult to record with one hand. This was due to many factors such as trying to use a device requiring both hands with one hand, or making a full video in one take. To allow users to more easily interact with devices hands-free, a headset could be used so that users do not have to hold their phone with one hand. However, smartphones have their own advantages in that they are more commonly possessed. Additionally, we can easily incorporate multiple modalities of input and output in our design with smartphones, thus making it an overall better choice for the system.

To address the challenge of taking a video in one take, TutorialLens allows authors to create step-by-step instructions. Instead of playing a tutorial video from the beginning to the end, TutorialLens pauses between steps, so that in the end, novice device users can follow the guidance tutorial step-by-step.

3.3.2 Providing Context

During our user study, participants felt the need to explain device features in depth when creating tutorials. However, during the interviews when participants discussed their needs in consuming tutorials, they mentioned that they often ignored such explanations, either because they felt they did not need it or the explanations did not seem quite relevant. Moreover, novice device users tended to care the most about efficiency and tried to go through the tutorials as quickly as possible, and even skipped parts to speed things up. Such a gap between the needs of tutorial authors and novice users inspired our step-by-step design of the system. In this way, authors are forced to create the tutorial step-by-step, only including information within the context of each step. Thus, created tutorials can provide relevant information to novice users through progressive disclosure.

3.3.3 Being Clear and Concise with Instructions

Through our video coding analysis, we found that most of the video tutorials had verbal instructions. Comparing the two types of verbal instructions, we found that tutorial videos that were voiced over were more concise with instructions than the narrated tutorial videos. Meanwhile, participants mentioned that they wished they could go back and change their narration to make it more clear and concise. This inspired our design of incorporating speech recognition during

Figure 2: Visualization of an example coded video tutorial on how to use a parking meter kiosk. The pointing and physical interaction codes appear alternatively, the second person and narration codes appear from the beginning to the end, informative code appears at the beginning, and external object code appears towards the end.
TutorialLens generates a sequence of user actions for a task by
applying methods that work to transcribe author narration, and uses the Apple ReplayKit framework, and specifically utilizes the image tracking functionality to locate authors’ fingers in the 3D space. In order for ARKit to track fingers more accurately, authors need to wear "finger markers" (Figure 1 (1) and (2)). The system also uses speech-to-text in the Apple Speech framework to transcribe author narration, and uses the Apple ReplayKit framework to record the screen while capturing user actions.

4 TUTORIALLENS

4.1 Authoring Mode

In the setup phase, the tutorial author is first guided through
the interface step-by-step, using a combination of AR visual guidance
as well as text and audio instructions.

4.2 Detecting User Actions. The user action detection mechanism of TutorialLens is based on the Apple ARKit framework, and specifically utilizes the image tracking functionality to locate authors’ fingers in the 3D space. In order for ARKit to track fingers more accurately, authors need to wear "finger markers" (Figure 1 (1) and (2)). The system also uses speech-to-text in the Apple Speech framework to transcribe author narration, and uses the Apple ReplayKit framework to record the screen while capturing user actions.

TutorialLens is able to track all five fingers on one hand of an
author. For simplicity in our demonstration, we will focus on using the index finger and the thumb. Whenever any of the author’s configured finger markers starts to appear in the camera view (meaning that they starts with the user step demonstration), the system starts to record the 3D finger location of any finger in view. When all fingers disappear from the camera view, the system prompts to confirm with the author if this step has been completed.

3.3.4 Enabling Easy Editing. When finished with creating video
tutorials, participants sometimes found their earlier demonstrations
redundant, or contained mistakes that they wished to remove from
the video tutorials they created. However, participants reported that
they did not have sufficient video editing skills to efficiently remove
the parts as they wished. Most tutorials did not have additional post-
production editing and usually included the demonstrations for all
the steps in one take. In our video coding analysis, tutorial videos
for complex devices such as how to use a 3D printer also had a lot
more components compared to a tutorial video for a parking meter
or kiosk. To overcome this challenge, we designed TutorialLens
to enable authors to easily edit tutorials on a smartphone. First,
the system guides authors to demonstrate step-by-step, and allows
them to confirm or redo at the end of each step; and second, when
all steps are completed, authors are provided with a summary of
steps in the created tutorial, and are allowed to further edit the
description of each step. These designs allow authors to easily edit
the created tutorials both during and after the creation process.

3.3.5 Showing Potential Errors and Failures. Participants also men-
tioned that they wanted to explain or show potential errors that
might happen when using the device, for example, how to set up
a camera to shoot an image with a blurred background, or how a
device might react if things were measured or loaded incorrectly.
Participants also wanted to show what would happen to the dis-
play screen if different settings were selected. Although we did not
address this finding in the TutorialLens design, we will discuss po-
tential future directions of merging different paths and supporting
branching of tasks in our discussions in Section 6.4.

Then the author enters the iterative authoring phase. From this
point, the phone microphone starts to capture what the author says.
When at least one of the author’s fingers starts to appear in the
camera view, TutorialLens starts to record the user interaction –
movement of the author’s detected fingers. It also records the screen
to capture a video clip of the demonstration. When all fingers dis-
appear from the camera view and do not appear within about 2
to 3 seconds, TutorialLens prompts to ask the author if they have
completed this step and that the device display screen has been
updated. The author can confirm step completion, keep demon-
strating, or redo the current demonstration in case they have made
some mistakes or are not satisfied with their demonstration. When
step completion is confirmed, TutorialLens saves the recorded inter-
action, video clips, captured display screen status, and transcription
of author narration of this step. After that, TutorialLens asks the
author if they want to add another step to the tutorial, and repeats
the process until the author responds “no”, indicating that they
have reached the end of the tutorial.

Then the author enters the finalization phase. The author is
asked to take a picture of the final display screen, and then shown
a summary table including the captured display screen image and
transcription of the author’s narration of each step. The author can
direct the text transcriptions and watch the video clip of the captured
demonstration of each step, or confirm to save the tutorial (includ-
ing the image files, video clips, as well as a JSON file containing
finger locations and transcription text of each step) locally. The
author can also select tutorials in the main page to upload saved
tutorials and share their tutorials with other people.

4.1.1 Modeling Tasks. TutorialLens models a task on a user inter-
face as an "action sequence." Each action sequence contains a sequence
of states of the interfaces that can be uniquely identified by a cor-
responding reference image. A reference image is an image of part
of an interface that changes while users interact with it, to give
feedback on the current status of the device, for example, the dig-
tal display on a microwave that would change as a user presses
a button. An action is required between two neighboring states in
the sequence, and makes the transition from the previous state to
the next. The action is usually certain user interaction with the
interface, for example, pressing a button, opening or closing parts
of the machine, etc.
When no finger is found in the camera view, the system does not wait for 150 frames (about 2 to 3 seconds). When no finger is found throughout the 150 frames, the system considers it as step completion.

4.1.3 Using Device Markers for Better Detection and Tracking. As ARKit is mostly designed for room scale tracking using feature points on large surfaces, it does not work well when detecting the 3D finger locations in our use case. To make user action detection more accurate and robust, we use relative 3D finger locations to a device marker instead of using absolute coordinates. We define a device marker to be a static location on the interface, for example, the machine logo, the control panel, etc. A device marker is expected to be within the same camera view as the demonstrated user actions, such as pressing a button; it also needs to be trackable, which means it has enough feature points and is large enough for ARKit to recognize. Before an author demonstrates a task, TutorialLens allows them to add customized device markers, so that the system can record the 3D finger locations relative to the device markers during demonstration.

For the i-th frame in the user interaction, we define

$$F_i = (F_{\text{finger}_1,i}, F_{\text{finger}_2,i}, \ldots)$$

and for each finger

$$F_{\text{finger}_j,i} = (x_{\text{finger}_j,i}, y_{\text{finger}_j,i}, z_{\text{finger}_j,i})$$

to be the 3D coordinates of user fingers relative to the device marker.

$$D_i = (x_{\text{device},i}, y_{\text{device},i}, z_{\text{device},i})$$

is the 3D coordinates of the device marker in this frame. Note that for each F_i, a maximum of five fingers can be recorded, while all finger locations are required. As long as one finger appears in the view, this finger location is recorded. By default, ARKit captures the 3D coordinates of fingers in the absolute coordinate system from camera view, say

$$F'_{\text{finger}_j,i} = (x'_{\text{finger}_j,i}, y'_{\text{finger}_j,i}, z'_{\text{finger}_j,i})$$

Thus, the system computes the relative locations of user fingers to the device markers as

$$F_{\text{finger}_j,i} = F'_{\text{finger}_j,i} - D_i$$

The system can then reproduce the finger locations in the access mode by reversing the computation. Note that in order to record the relative 3D finger locations, there must be at least one device marker available in the camera view. This means if all device markers are blocked or out of view, the finger locations would not be recorded.

TutorialLens also uses reference images added by users as additional device markers, as they have “semi-static” locations on the device within the time frame of an individual user step. Thus, multiple device markers would be available during user demonstration. This allows the system to choose whichever device marker available when calculating finger positions. This is especially helpful when some device marker is either out of view or blocked by users’ hands during demonstration. Later in our design iterations (Section 4.3.5), we demonstrate that using device markers while recording finger locations and having multiple device markers to choose from substantially increase the accuracy of user action detection and reproduction.

4.2 Access Mode

In the access mode, a novice user can select from a list of available tutorials on the main page. TutorialLens starts by asking the novice user to point their camera to the display screen of the device, in order to determine the current step and retrieve the corresponding guidance. This process will be discussed in Section 4.2.1 in more detail. Whenever it recognizes the current user step, it informs the novice user of successful recognition, retrieves the 3D finger movements, and displays the AR visual guidance. TutorialLens also retrieves the description text of the current step, displays it as text instruction on the top of the screen, and announces it aloud to the novice user.

When the novice user completes a step, the display screen of the device updates. When this change is captured through the camera view, TutorialLens knows that the user has completed this step and automatically proceeds to the next step. However, if TutorialLens...
fails to automatically recognize display screen updates, the novice user can always force it to proceed to the next step by clicking on the right arrow at the bottom of the page. This process is repeated when the final state of the display screen is recognized.

4.2.1 Determining Current User Step. TutorialLens identifies the current user step by searching in existing reference images saved for this task. As the reference images have 1-to-1 mappings with all the steps of the sequence of actions, there should always exist at most one reference image in the camera view. For example, whenever the system recognized the home screen of the digital display of the printer, it knows that the user is in the first step of a task. Thus, the system knows which step a novice user is on, and provides corresponding guidance for the novice user to complete the step.

As a novice user completes a step, the display screen updates and a new reference image appears in the camera view. In this way, TutorialLens keeps proceeding to the next state of the action sequence until it reaches the final state.

4.2.2 Providing Guidance. After the system determines which step a novice user is currently on, it retrieves the corresponding sequence of finger locations of this step, and displays each finger as a colored ring in the AR scene to demonstrate to the novice user on how to move their fingers.

To do this, TutorialLens takes the recorded sequence of finger movements, and looks for the device marker used for each frame. If this device marker does not appear in the camera view, it displays an image of the part of the device to point to, and asks the novice user to move their phone camera to this part of the device. Once that device marker is detected, the system reproduces the absolute finger location in the current camera view using the finger coordinates relative to the device marker, by computing

\[F'_{\text{finger},i} = D'_i + F_{\text{finger},i} \]

where \(D'_i \) is the 3D coordinates of the device marker in the current camera view, and \(F_{\text{finger},i} \) is the stored relative finger location in the sequence.

TutorialLens might also play the video clip of the step demonstration as a secondary option when AR visual guidance of finger movements is not available. This happens when no finger movement has been recorded, usually when device markers cannot be found during the author’s demonstration. While displaying the AR visual guidance or playing the video demonstration, TutorialLens also retrieves the saved text transcription of the author’s description of the step, and displays it as text instructions to the novice user and announces the text using text to speech.

4.3 Design Iterations

4.3.1 End-User AR Tutorial with Pre-Specified Action Sequence. In the early stages of the project, we brainstormed possible uses of AR in assisting users with understanding and interacting with unfamiliar interfaces. We categorized user interaction with interfaces into three different major types: buttons and toggles, touchscreen gestures, and interactions involving real physical objects such as inserting bills or swiping credit cards. We designed different visual indicators for these different types of interactions, and created an example AR tutorial for a printer interface with pre-specified action sequence: select the copy option from home page, opening the top cover, placing the document to copy, closing the top cover and press the start button, and going back to the home page once the printing job is completed. Each of these steps was uniquely identified by a reference image of the digital display or some other part of the printer, and the device location was identified by a pre-specified device marker – the printer logo on the control panel.

4.3.2 Preliminary User Study. With our end-user AR tutorial with a pre-specified action sequence, we ran a preliminary user study with 3 users who had never used the printer interface before. We asked each user to complete the task of copying a document, by following the AR visual indicators as well as text and audio instructions. During the process, we asked the users to “think aloud” and verbalize their thought process.

From our preliminary user study, we found that users got confused by some of the visual indicators. More specifically, since some of the steps involved opening and closing parts of the printer, our prototype displayed a 3D simulation of the expected movement of these parts in the AR scene, for example, when the paper tray needed to be pulled out, our prototype displayed an animated 3D box simulating the tray moving out from the printer. However, users indicated that they did not know which exact part of the printer to interact with.

4.3.3 Using Simulated Finger Movements as Visual Indicators. Although our initial prototype received overall positive feedback, it was developed based on a fixed task with the action sequence, reference images and corresponding visual indicators inputted manually. The prototype was also developed specifically for the printer interface, thus the visual indicators in the prototype could hardly be authored in a generalizable way.

Because of this, we needed to re-design the visual indicators so that they could be automatically generated given user input of the actions. As we hoped our authoring tool would work with both physical interfaces and touchscreen interfaces, as well as both flat interfaces and 3D devices, designing visual indicators based on device parts seemed quite challenging as their shape and position vary a lot across different devices.

However, one thing in common for these different types of interactions is that all of them require a user’s hand in the process. Thus, instead of displaying the movement of parts of the device, we decided to record the finger movements of an experienced user interacting with the device, and then replay the finger movements to guide a novice user to use the device.

4.3.4 Prototyping Finger Tracking. We experimented with multiple different finger tracking methods, such as detecting convex hull
We conducted a user study to evaluate (1) how well TutorialLens works in enabling experienced users to create AR tutorials, and (2) how usable the created AR tutorials are in helping novice users interact with unfamiliar interfaces.

5.1 Apparatus and Participants

The TutorialLens app ran on iOS with versions higher than 13.0, and was distributed to participants through TestFlight invitation. Participants were asked to either print out or draw out the finger markers for tracking and wear them on their thumb and index fingertips. Participants also used laptops or tablets of their choice to connect with the study coordinator remotely via Zoom meetings.

We recruited 7 pairs of (a total of 14) participants (separately from our formative user study) through email solicitations and social media posts, with each pair of participants living in the same household. Participants of our study had a variety in levels of experience with AR from little or no experience to lots of experience, and the majority of our participants had little or no experience with AR development. Participant demographics are presented in Table 1.

Due to COVID-19, it was not safe to ask participants to use public devices or come to lab space. Thus, the devices used in our studies were selected based on availability in participants’ households. Each pair of participants was asked to choose a device in their household that had a display screen and a control interface. The device choices of each pair of participants were also included in Table 1. This restricts the types of devices we could use and thus the complexity of tasks was beyond our control. This makes our user study extra challenging because our app had to work in the wild.

5.2 Procedure

All study sessions were conducted remotely through Zoom and upon IRB approval of our institution. Each pair of participants in the same household were connected with the study coordinator in a Zoom meeting, during which participants pointed their webcam to the device they used for the tasks and followed instructions of the study coordinator. At the beginning of each study session, demographic information was collected and participants were asked to choose a device that had a display screen and a control interface, and to choose a task on the device that included as many steps as possible and ideally with interactions other than button presses. Participants also decided their roles as the tutorial author and the novice user based on their familiarity with the device of their choice.

Each study session consisted of two parts. In the first part, the author first completed a training session of creating a one-step tutorial for a simple task (such as pressing a button) on the device they chose. Then the author was asked to create a longer tutorial on a multi-step task on the same device. In the second part, the novice user was asked to follow the AR tutorial created in the first part of the study to complete the same multi-step task on the device.

All study sessions were recorded via Zoom upon participants’ consent. We recorded the time of completion for creating the tutorial, and for finishing the task using the tutorial. We also asked participants to give ratings on a few statements on a Likert scale from 1 to 7 (1 being strongly disagree and 7 being strongly agree) regarding their overall experience and on each design component. Each study session took about 1.5 hours, and participants were compensated a 25 USD Amazon gift card.
5.3 Results

In summary, all authors were able to successfully create interactive AR tutorials with the TutorialLens iOS app, and all novice users were able to complete the specified task with the guidance. Authors spent an average of 53.5 seconds (SD = 29.72) per step while creating tutorials. The longest one took 463 seconds (about 8 minutes) for a 4-step tutorial, while the shortest took 90 seconds for a 4-step tutorial. Novice users spent an average of 27.32 seconds (SD = 6.29) per step while using the created tutorials to complete tasks on the devices. The longest took 258 seconds for a 4-step tutorial, while the shortest took 23 seconds for a 4-step tutorial. Note that during the process, some novice users had to press the next button to proceed to the next step as the display screen update could not be recognized. This might be due to the varied lighting conditions in the study environments, which made image recognition challenging. Another cause of recognition failure was that the starting state of some devices included the clock time (for example, default screen display of microwaves or ovens), thus the starting state of display screen would be different from the saved reference image when a novice user was trying to complete the task.

For subjective ratings, authors found the TutorialLens iOS app easy to learn (M = 5.43, SD = 1.62), somewhat comfortable (M = 4.86, SD = 1.68), and accurately capturing their demonstration (M = 5.57, SD = 2.15). More specifically, authors found the finger tracking somewhat accurate (M = 4.83, SD = 1.94), and user step detection very responsive and accurate (M = 6, SD = 1.15). Participants reported that the discomfort was mainly due to wearing finger markers, and positioning the finger markers in specific angles to be tracked. Some participants also reported that they felt less need of TutorialLens for creating tutorials of simple tasks on home devices, while they believed that it could be quite useful when the tasks and devices became a lot more complicated.

On the other hand, novice users found the created tutorials useful (M = 5.14, SD = 1.35), very comfortable to use (M = 6.29, SD = 0.76), and would be very willing to use tutorials created with TutorialLens for unfamiliar devices and tasks in the future (M = 6.14, SD = 0.38). Due to the restrictions in recruiting participants, some novice users in our user study were not completely unfamiliar with the devices. However, participants believed that TutorialLens could be especially helpful if the tasks were very complicated or if they were really unfamiliar with the devices.

Overall, most authors very much liked the step-by-step design of TutorialLens, and thought it was “very helpful” and “pretty natural.” Participants felt like the design “helps you to get organized” and “forces you to do step-by-step.” Meanwhile, novice users overall liked the guidance given by TutorialLens, and were very positive about the potential use of TutorialLens. Participants found the created tutorials “pretty intuitive” and “really easy to use.” They also liked the feedback given by TutorialLens upon detection of step completion when there was an update on the display screen, which gave them a feeling that “it kinda know when I’m done with my step.”

Another interesting finding during our user study was that, although some authors did not feel much of a need of TutorialLens when they were first done creating the tutorials, they were surprised and expressed more confidence in TutorialLens when they learned about the very positive feedback from novice users on the tutorials they created.

6 DISCUSSION AND FUTURE WORK

6.1 Automating AR Authoring

Most authoring tools for AR and for tutorial systems require lots of manual user input, and sometimes require users to separate the steps of a task at their own discretion. TutorialLens automates the
We have received positive comments on the multi-modal feedback work might consider refining the sequential modeling of tasks to TutorialLens’ ability of task and activity recognition.

To adapt to complex spatially distributed tasks, leveraging addi-
tional types of markers and 3D vision techniques could help extend TutorialLens for more complicated tasks, e.g., those that require a model of the hand to show more subtle and delicate movements. To adapt to complex spatially distributed tasks, leveraging additional types of markers and 3D vision techniques could help extend TutorialLens’ ability of task and activity recognition.

We have presented TutorialLens, a system for authoring interactive AR tutorials through narration and demonstration. TutorialLens allows authors without experience with AR development to easily create interactive AR tutorials of devices step-by-step by narration and demonstration, and then provides AR visual guidance with supporting text and audio feedback to guide novice device users to complete tasks using the created tutorials. TutorialLens automatically captures authors’ interactions and generates action sequences for the tutorials, and allows easy editing while creating the tutorials. It also automatically recognizes current user step and provides contextual AR visual guidance and multi-modal feedback for novice users to complete tasks on unfamiliar devices. Our formative study identified the key challenges and user needs which informed many design components of the TutorialLens system. Our user evaluation demonstrated that TutorialLens could effectively guide authors to create usable AR tutorials for novice users. TutorialLens is friendly to authors without AR development experience, allows easy editing, and can be applicable to a variety of devices and tasks.

6.2 Generalizability
TutorialLens is generalizable to a variety of devices and tasks. As long as the device gives visual feedback to users during interactions, authors can capture these visual updates when creating tutorials. Thus, TutorialLens could potentially be applicable to a wide range of devices, from public kiosks such as subway ticket machines and gas station kiosks, to workplace and home appliances such as printers, microwaves, ovens, etc.

TutorialLens can also support a wide range of gestures during demonstration. As it tracks different fingers on one hand of the author, it captures the overall hand movements in 3D as well as the relative movements of the author’s fingers to each other. Thus, a variety of gestures could be captured, including pressing (tapping) buttons, swiping or sliding, turning knobs, grabbing items, etc.

A limitation of our study is that we only evaluated TutorialLens on relatively simple tasks involving button pressing and knob turning (P1, instant pot). Future work might investigate extending TutorialLens for more complicated tasks, e.g., those that require complex hand movement and 3D understanding of the space. To visualize complex hand movement, TutorialLens could reconstruct a model of the hand to show more subtle and delicate movements. To adapt to complex spatially distributed tasks, leveraging additional types of markers and 3D vision techniques could help extend TutorialLens’ ability of task and activity recognition.

6.3 Multi-Modal Guidance
We have received positive comments on the multi-modal feedback of TutorialLens – supporting AR visual guidance with text instructions and audio feedback in the access mode. As they provided auxiliary instructions to support the AR visual guidance, users found these feedback useful in helping them understand the action to take in each step. Multi-modal feedback especially helps when finger movements are too vague for a novice user to identify what action to take with the interface, or when an author’s fingers move too far away from the device markers, and thus can no longer be tracked by the system.

6.4 Supporting Tasks with Multiple Branches
One key insight from our formative study that we have not addressed in the TutorialLens design is the need to show potential errors and failures to users. The current TutorialLens design follows a sequential modeling of tasks, and authors can add multiple tutorials for different tasks on the same device, while we notice that these tasks might overlap with each other in some steps. Future work might consider refining the sequential modeling of tasks to support branching of user steps to combine different tasks on a device, so that authors can create a single comprehensive tutorial for a device as well as including possible failure paths for novice users to look at.

6.5 Limitation
The current finger tracking method in our prototype requires paper labels to be attached to user fingers. As mentioned above in our user study results (Section 5.3), these labels can negatively affect the user experience, and make it not as natural as the user demonstrating the interactions with their bare fingers. However, we believe that this issue could be resolved as hand and finger tracking algorithms develop and more features are supported in AR development platforms in the future.

Another limitation of TutorialLens is that it requires the device markers to be relatively close to the points of interactions on every step. For example, when an author’s fingers move too far away from the display screen and control panel during demonstration, most of the finger movements will not be captured by the camera. In our prototype, such limitation is partly made up by the multi-modal feedback in the access mode – the user can still follow the text and audio instructions when they do not see AR simulations of finger movements on the screen.

TutorialLens also requires a non-subtle update on the display screen of the device after each step, otherwise it would not be able to identify current steps and thus provide guidance for novice users. This might narrow the types of devices TutorialLens can be applicable to, or we might have to make the trade-off between the level of automation in authoring and the range of devices the system supports. Future work might investigate multi-modal recognition during authoring to expand the scope of device changes the system can capture. Aside from recognizing display screen updates of each step, we could potentially determine the current step a user is on by capturing audio or other forms of feedback from the device, such as a beeping sound after clicking a button.

7 CONCLUSION
We have presented TutorialLens, a system for authoring interactive AR tutorials through narration and demonstration. TutorialLens allows authors without experience with AR development to easily create interactive AR tutorials of devices step-by-step by narration and demonstration, and then provides AR visual guidance with supporting text and audio feedback to guide novice device users to complete tasks using the created tutorials. TutorialLens automatically captures authors’ interactions and generates action sequences for the tutorials, and allows easy editing while creating the tutorials. It also automatically recognizes current user step and provides contextual AR visual guidance and multi-modal feedback for novice users to complete tasks on unfamiliar devices. Our formative study identified the key challenges and user needs which informed many design components of the TutorialLens system. Our user evaluation demonstrated that TutorialLens could effectively guide authors to create usable AR tutorials for novice users. TutorialLens is friendly to authors without AR development experience, allows easy editing, and can be applicable to a variety of devices and tasks.
REFERENCES

