
Touchscreens in Motion: Quantifying the Impact of Cognitive 
Load on Distracted Drivers 

Xiyuan Shen∗ 
Paul G. Allen School of Computer 
Science & Engineering | DUB Group 

University of Washington 
Seattle, Washington, USA 

xyshen@uw.edu 

Seokhyun Hwang∗ 
The Information School | DUB Group 

University of Washington 
Seattle, Washington, USA 

seokhyun@uw.edu 

Junhan Kong 
The Information School | DUB Group 

University of Washington 
Seattle, Washington, USA 

junhank@uw.edu 

Alexandre L. S. Filipowicz 
Toyota Research Institute 
Los Altos, California, USA 
alex.filipowicz@tri.global 

Andrew Best 
Toyota Research Institute 
Los Altos, California, USA 
andrew.best@tri.global 

Jean Costa 
Toyota Research Institute 
Los Altos, California, USA 

jean.costa@tri.global 

Scott Carter 
Toyota Research Institute 
Los Altos, California, USA 
scott.carter@tri.global 

James Fogarty 
Paul G. Allen School of Computer 
Science & Engineering | DUB Group 

University of Washington 
Seattle, Washington, USA 

jfogarty@cs.washington.edu 

Jacob O. Wobbrock 
The Information School | DUB Group 

University of Washington 
Seattle, Washington, USA 

wobbrock@uw.edu 

Figure 1: Conceptual diagram of the conducted study. It displays the three main methodologies used in this research. From left 
to right: pupil diameter, electrodermal activity (EDA), and the NASA-TLX questionnaire are shown as measures of cognitive 
load. Lateral deviation and throttle control variability are presented to assess driving performance, and the ISO 9241-9 "ring of 
circles" task used for Fitts’ law analysis is included to quantify interaction with the touchscreen. 
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Abstract 
This study investigates the interplay between a driver’s cognitive 
load, touchscreen interactions, and driving performance. Using an 
𝑁 -back task to induce four levels of cognitive load, we measured 
physiological responses (pupil diameter, electrodermal activity), 
subjective workload (NASA-TLX), touchscreen performance (Fitts’ 
law), and driving metrics (lateral deviation, throttle control). Our 
results reveal significant mutual performance degradation, with 
touchscreen pointing throughput decreasing by over 58.1% during 
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driving conditions and lateral driving deviation increasing by 
41.9% when touchscreen interactions were introduced. Under high 
cognitive load, participants demonstrated a 20.2% increase in 
pointing movement time, 16.6% decreased pointing throughput, 
and 26.3% reduced off-road glance durations. We identified a 
prevalent "hand-before-eye" phenomenon where ballistic hand 
movements frequently preceded visual attention shifts. These 
findings quantify the impact of cognitive load on multitasking 
performance and demonstrate how drivers adapt their visual 
attention and motor-visual coordination when cognitive resources 
are constrained. 
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• Human-centered computing → Empirical studies in HCI. 
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1 Introduction 
Touchscreens have become increasingly prevalent in vehicles, 
providing access to various functions and information [4]. Despite 
their functionality, operating a touchscreen while driving 
introduces distractions that may negatively impact driver safety 
[57]. The National Highway Traffic Safety Administration 
(NHTSA) warns that visual distraction away from the road should 
be limited, recommending glances not exceed 2.0 seconds [74]. 
When secondary tasks like touchscreen interactions exceed driver 
processing capacity, information overload may occur [18, 107], 
impairing both driving safety and touchscreen efficiency. The 
result can be a frustrating user experience in the best case and a 
disastrous driving accident in the worst case. 

Therefore, researchers have quantified factors affecting 
in-vehicle touchscreen interaction. Previous studies 
[3, 46, 55, 62, 109] have investigated how display size, location, 
and interface component design affect driving performance, 
focusing on isolated touchscreen tasks. However, there is growing 
recognition of the need to understand the specific mechanisms 
through which touchscreens and driving influence each other, 
necessitating an expansion of the research scope to include 
multitasking scenarios [28, 48, 75, 81]. In response, recent studies 
have explicitly examined user behaviors in multitasking contexts 
such as dialing or texting [9, 48, 58]. Although these studies 
explore some specific aspects of multitasking, there is a broader 
need to address a wider variety of secondary tasks. 

To this end, we studied cognitive load and touchscreen 
performance to quantitatively assess various multitasking 
scenarios. Cognitive load quantifies the total mental resources 

engaged by a person across concurrent tasks and, in the context of 
driving, indicates a driver’s information processing state and 
capabilities [7, 21, 113]. Our study aims to broaden the discussion 
on how multitasking-induced cognitive load influences driver 
behavior during touchscreen interactions by: (1) quantifying 
cognitive load, (2) quantifying driver touchscreen interaction 
performance, and (3) quantifying driving performance. 

First, we manipulate different levels of cognitive load using 
an 𝑁 -back task [78], a widely adopted paradigm for controlling 
working memory demands [31, 56, 92, 103, 104]. To measure 
the cognitive load, we collected physiological data from pupil 
diameter [44] and electrodermal activity (EDA) [88] and assessed 
participants’ perceived mental workload using the NASA-TLX 
questionnaire [40, 41]. Second, to quantify drivers’ touchscreen 
interaction performance, we used Fitts’ law [30, 64] to model 
drivers’ pointing performance, and used eye-tracking sensors to 
measure drivers’ visual attention distribution between the road 
and the touchscreen. We specifically employed the ISO 9241-9 
“ring of circles” task in which participants select targets arranged 
in a circular pattern [20, 47, 66, 91]. Third, we evaluated driving 
performance through two key metrics: steering and pedal control. 
Steering performance was assessed by lateral deviation from the 
road centerline, which measures how well the driver maintains 
lane position. Pedal performance was assessed through throttle 
control variability, which measures the consistency of gas pedal 
manipulation. 

Our results show that touchscreen pointing throughput 
decreased by 58.1% during driving conditions (Section 4.3.1), and 
lateral driving deviation increased by 41.9% after introducing 
touchscreen interactions (Section 4.2.1). These results confirm that 
with limited information processing capacity, dual-task interplay 
degrades performance in both tasks. 

Furthermore, high cognitive load significantly impacted drivers’ 
touchscreen interaction. Drivers exhibited a 20.2% increase 
in pointing movement time and a 16.6% decrease in pointing 
throughput, from 2.42 bits/s to 2.01 bits/s (Section 4.3.2). Drivers’ 
off-road glance duration decreased by 26.3%, from 1207 ms to 889 
ms per gaze transition (Section 4.4), and induced a prevalent 
"hand-before-eye" phenomenon, where ballistic hand movements 
preceded visual attention shifts, intensifying to 71.9% under 
high cognitive load. These results emerged from an overloaded 
visual-motor system attempting to compensate for insufficient 
processing resources during complex multitasking conditions. 

This paper provides the following research contributions: 
• Quantitative empirical results showing mutual performance 
degradation between driving and touchscreen interactions. 

• Quantitative empirical results showing how varying 
cognitive loads affect drivers’ touchscreen pointing 
performance and visual attention. 

• Mixed-methods results about how drivers adapt their visual 
attention to balance touchscreen interaction efficiency and 
driving safety under different cognitive loads. 

Our findings highlight the potential of the hand-before-eye 
coordination pattern as a real-time cue for detecting elevated 
cognitive load during driving. We also propose design guidelines 
for interface strategies such as flattening interaction workflows to 
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reduce multi-step tasks, adaptively accelerating target acquisition, 
and deploying load-sensitive alerts to interrupt prolonged off-road 
glances. Together, these implications support the design of future 
touchscreen interfaces that better balance usability and safety in 
high cognitive load contexts. 

2 Related Work 
Prior work related to this research primarily falls into three 
categories: (1) cognitive load when driving, (2) touchscreens in 
vehicles, and (3) Fitts’ law in human-computer interaction. We take 
each of these in turn below. 

2.1 Cognitive Load in Driving Contexts 
Cognitive load has been a consistent topic for driving research [11], 
particularly within efforts to detect and reduce safety risks posed 
by distracted driving. Studies of driving in both real-world and 
simulated driving environments find that high cognitive load 
reduces people’s attention to important cues in their surrounding 
environment and increases unsafe behaviors [5, 12, 23, 36, 39, 84]. 
For example, an on-road study by Harbluk et al. found that drivers 
performing a mental arithmetic task focus their gaze primarily 
on the center of the road. This shift in gaze led drivers to ignore 
peripheral cues indicated in their mirrors or at intersections and 
increased the frequency of dangerous hard braking events [39]. 
Moreover, a meta-analysis conducted by Caird et al. found that 
conversations while driving (i.e., on a cell phone or with a 
passenger) lower vigilance to external events, slow driver reaction 
times, and increase the chance of collisions [12]. 

In response to driving safety risks posed by cognitive load, 
regulators have proposed legislation mandating in-vehicle systems 
that detect and mitigate the effects of cognitive distractions [13]. 
However, distractions from cognitive load are challenging to 
detect because they represent an internal state rather than an 
overt external behavior (e.g., eyes off the road [33], hands off the 
wheel [73]) [37, 94]. As such, driving research has focused on 
identifying in-cabin methods to reliably measure and detect an 
individual’s level of cognitive load. 

There are three main methods used to measure cognitive 
load during driving [11, 60]: self-report, task performance, 
and physiological measures. Self-report methods, such as the 
Subjective Workload Assessment Technique (SWAT) [83], 
Workload Profile [99], Instantaneous Self-Assessment [96], 
and the NASA Task Load Index (NASA-TLX) [41, 79], provide 
post hoc assessments of subjective load but lack real-time 
sensitivity. Task performance measures examine changes in 
driving behavior (e.g., particularly situational awareness and 
reaction times to external events [5, 80]) and secondary-task 
performance (e.g., slower response times and reduced accuracy 
on peripheral detection or detection response tasks [8, 72]), 
reflecting impairments in cognitive control [24]. Physiological 
measures track sympathetic arousal (e.g., pupil diameter [31, 98], 
electrodermal activity [69, 70], heart rate [70]), eye-movement 
alterations [35, 36], and EEG spectral changes [16, 86]. Recent 
studies have combined these signals using machine learning to 
detect periods of elevated cognitive load (e.g., convolutional neural 

networks on eye-tracking videos [31], multimodal classifiers 
achieving up to 97% accuracy [42]). 

Taken together, this previous work shows that cognitive load 
reduces a driver’s attentional resources, limiting the bandwidth they 
have to act, such as performing unexpected evasive maneuvers 
or interacting with their car’s touchscreen. It also highlights 
that measuring cognitive load requires a combined approach that 
includes subjective reports, behavior (particularly on secondary 
tasks), and physiology. 

2.2 In-Vehicle Touchscreen Interfaces 
Previous studies have investigated various factors influencing 
driver interaction performance with in-vehicle touchscreens. First, 
research has addressed the physical characteristics of touchscreens, 
such as their size and placement. Lamble et al. [55] reported that 
increased eccentricity of touchscreen locations from a driver’s 
direct line of sight can lead to reductions in predicted collision time 
during tasks requiring sustained visual attention. Complementing 
this finding, Wittmann et al. [109] highlighted that the distraction 
caused by touchscreen interactions increases exponentially as the 
distance from the driver’s primary visual field to the touchscreen 
interaction point grows. Furthermore, research by Ma et al. [62] 
provided evidence that, although larger screens (e.g., 10-inch or 
17-inch displays) enhance the availability of information, they 
simultaneously exacerbate visual distractions compared to smaller 
screens (e.g., 7-inch or 9-inch). 

Second, research has focused on the specific design attributes of 
touchscreen interfaces, including the arrangement and visual design 
of display elements. Studies by Nothdurft et al. [76] demonstrated 
that arranging interface elements closely together improves visual 
search efficiency; however, overly dense arrangements may impair 
the recognition of individual targets [102]. Additionally, Yoon et 
al. [111] found that visual features in vehicle instrument clusters 
(e.g., icon dimensions, density, and color variability) significantly 
affect the perceived visual complexity and consequently impact the 
efficiency of visual searches. 

Although these studies provide valuable insights into the 
influence of touchscreen location, size, and visual design on driver 
performance, the majority of this research has predominantly 
concentrated on single-task scenarios [28]. Such scenarios 
effectively isolate driver interactions but fail to capture the 
multitasking complexity inherent in realistic driving situations. 
Addressing this gap, subsequent studies have begun to extend 
their scope to incorporate multitasking involving touchscreen 
interactions. Janssen et al. [48], for instance, explored drivers’ 
cognitive chunk boundaries during dialing tasks, while Lee et al. 
[58] examined drivers’ gaze patterns and task-switching behaviors 
during reading tasks performed while driving. These studies 
expanded the understanding of driver behavior in multitasking 
contexts, yet their findings remained confined to specific activities 
such as dialing or text reading, limiting their generalizability to 
realistic driving contexts. 

2.3 Fitts’ Law in Human-Computer Interaction 
Fitts’ law, originally proposed by Paul Fitts in 1954 [30], models the 
time (𝑀𝑇 ) it takes to perform rapid aimed movements to targets of a 
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given width (𝑊 ) at a given distance, i.e., amplitude (𝐴). Rapid aimed 
movements are those that can be guided by the actor and should be 
contrasted with ballistic movements, which are fully determined 
by their launch conditions. Widely adopted in human-computer 
interaction (HCI) [64], the "Shannon formulation" of Fitts’ law [63] 
is expressed as: 

𝑀𝑇 = 𝑎 + 𝑏 · log2 

 
𝐴 
𝑊 

+ 1 

 
(1) 

In Eq. 1, 𝑎 and 𝑏 are empirically derived regression coefficients, 
and the logarithmic term defines the nominal index of difficulty (𝐼 𝐷 ) 
of the pointing task, measured in bits, with higher 𝐼 𝐷 indicating a 
more challenging task. Although 𝐴, 𝑊 , and 𝐼 𝐷 specify the nominal 
task, actual performance often deviates: users may undershoot 
or overshoot the amplitude 𝐴, and may over- or under-use the 
target width 𝑊 , possibly incurring errors. To account for these 
discrepancies, Crossman [14] proposed effective amplitude (𝐴𝑒 ) 
and effective width (𝑊𝑒 ), subsequently validated in prior work 
[64, 65, 91, 105]. In each 𝐴 × 𝑊 condition, 𝐴𝑒 is the mean of actual 
movement distances, and 𝑊𝑒 is computed based on the standard 
deviation of endpoints 𝜎 around target centers, and amounts to 
𝜎 
√ 
2𝜋 𝑒 , a constant related to the entropy of a standard normal 

distribution [110]. This correction ensures 𝑊𝑒 reflects true pointing 
precision rather than nominal target width. By computing 𝐼 𝐷𝑒 , 
researchers integrate users’ speed–accuracy biases into a unified 
throughput metric [65, 91, 112]: 

𝐼 𝐷𝑒 = log2 

 
𝐴𝑒 

𝑊𝑒 
+ 1 

 
(2) 

To minimize directional biases and enhance reliability, the ISO 
9241-9 standard recommends the "ring of circles" paradigm, which 
arranges targets evenly spaced along the circumference of a circle 
[20, 47, 66, 67, 91]. Participants begin from the top target and 
sequentially move across the diameter of the circle, tapping each 
target around the ring in a clockwise fashion. This design mitigates 
systematic directional biases that could influence movement time, 
as it requires movements in multiple directions. 

3 Experiment Method 
This section describes the methodology of the experiments, 
including participants (Section 3.1), apparatus and sensors (Section 
3.2), experimental design and data processing (Section 3.3 — 3.4), 
procedure (Section 3.5), and statistical methods (Section 3.6). 

3.1 Participants 
Sixteen participants (10 female, 6 male) with a mean age of 25.8 
years (𝑆 𝐷 = 4.1) and an average driving experience of 5.7 years 
(𝑆 𝐷 = 3.0) were recruited. Driving frequency was distributed as: 
daily (4), two or three times weekly (3), once a week (3), monthly 
(3), and less than monthly (3). All participants possessed valid 
driver’s licenses. Participants with myopia were instructed to wear 
contact lenses. All participants could terminate the experiment at 
any time and received a $40 gift card as compensation. The study 
was approved by our university’s Institutional Review Board. 

3.2 Apparatus 
We developed a driving simulation integrated with eye-tracking, 
electrodermal activity (EDA) sensors, and vision-based finger 
tracking sensors, along with an auditory 𝑁 -back task and a 
touchscreen-based Fitts’ law task (Figure 2). 

3.2.1 Simulation Environment. The driving simulation was 
developed using the open-source driving simulator CARLA [19]. 
For this study, we utilized CARLA’s Town10 map, which features 
an urban setting, as illustrated in Figure 2. Participants followed 
a predefined continuous route along the outer perimeter road. 
Participants used the Fanatec Podium Wheel Base DD2 steering 
system and the Fanatec Clubsport Pedals V3, mounted on a Trak 
Racer TR80 simulator frame, as shown in Figure 2. A 38-inch 
widescreen monitor was also attached to the TR80 frame, with the 
seat position, steering wheel height, and pedal distance adjustable 
to accommodate individual participant preferences. 

3.2.2 Sensor Setup. To measure drivers’ physiological states and 
touchscreen interactions, we integrated three sensors. Eye-gaze 
data were captured using the Tobii Pro Glasses 2, which tracks eye 
movements to determine a driver’s visual attention. It records gaze 
data at 100 Hz and captures 1920×1080 video at 25 fps from the 
user’s viewpoint. 

Cognitive load was quantitatively assessed using pupil diameter 
and EDA [10, 89, 100]. Pupil diameter was measured using the Tobii 
Pro Glasses 2, while EDA data were recorded at 15 Hz using the 
EmotiBit sensor [71], an open-source wearable device secured to 
participants’ wrists for physiological data collection. 

To capture finger movement distance and timing for the Fitts’ 
law analysis, we used a ZED 2i stereo camera combined with 
Google’s MediaPipe hand-tracking algorithm. The ZED 2i offers 
a 110°×70°×120° field of view, records binocular images at 2560×720 
resolution and 60 fps, and provides 16-bit depth data processed via 
the ZED SDK and MediaPipe to track index finger trajectories in 
3-D space. 

3.2.3 𝑁 -back Task. The 𝑁 -back task for this study required 
auditory responses from participants. A hi-fi speaker was integrated 
into the simulation setup to deliver audible stimuli to participants 
in the form of sequential random numbers, which were generated 
and converted into auditory form using Google Text-to-Speech, with 
each number presented at intervals of 2.5 seconds. Participants 
verbally responded with the number presented 𝑁 numbers behind 
the current number, and their responses were manually recorded 
by the experimenter. 

3.2.4 Fitts’ Law Task. We implemented the "ring of circles" ISO 
9241-9 task [20, 47, 91]. A Samsung Galaxy Tab S7 FE 12.4" 
was positioned to the participant’s right to enable comfortable 
touchscreen interaction, as illustrated in Figure 2. This tablet 
features a 12.4-inch display with a 16:10 aspect ratio and a resolution 
of 2560×1600 pixels. Active targets for selection appeared in Dodger 
blue, while inactive targets were displayed in gray. Incorrect 
selections caused the target to briefly flash red (for 100 ms), 
accompanied by an error tone, providing immediate feedback to 
the participant regarding misses. 
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Figure 2: Driving simulator and sensor system implemented for the experiment. Participants drove along a predefined route 
in an urban environment, shown on the left side of the figure. Simultaneously, they were instructed to perform the ring 
of circles task using a touchscreen located to the right of the steering wheel. During this process, a sensor for measuring 
electrodermal activity was attached to the participant’s wrist, a depth camera for tracking hand movements was installed above, 
and eyeglass-mounted sensors were worn to track gaze and measure pupil diameter. 

Baseline Non-Driving Target Selection Task. To establish a 
baseline for target selection performance without driving, we 
conducted a small Fitts’ law experiment with eight participants. 
Participants performed the same Fitts’ law task using identical 
experimental apparatus but without simultaneous driving or 𝑁 -
back tasks. The baseline experiment yielded an average throughput 
of 5.78 bits/s (𝑆 𝐷 = 0.61), which is in keeping with prior work on 
touchscreen target selection [6, 49, 87]. This result provided us with 
a baseline to quantify the impact of driving and cognitive load on 
touchscreen interaction. 

3.2.5 Questionnaire. Participants completed three questionnaires 
after each cognitive load condition: 

• NASA-TLX [40, 41]: Measures subjective workload under 
each condition. 

• Short Stress State Questionnaire (SSSQ) [43]: Measures 
participants’ perceived stress levels. 

• International Positive and Negative Affect Schedule 
Short Form (I-PANAS-SF) [50]: Assesses emotional states 
and affective responses. 

3.3 Experiment Design 
Our study aimed to observe and analyze the behaviors of drivers 
interacting with touchscreens under varying cognitive load 
conditions. We systematically induced four distinct cognitive load 
conditions: 

• No 𝑁 -back Task: Participants performed driving and 
touchscreen target selections without the 𝑁 -back task. 

• 0-Back: Participants repeated the number they just heard 
while driving and performing touchscreen target selections. 

• 1-Back: Participants responded with the number presented 
one number earlier while driving and performing 
touchscreen target selections. 

• 2-Back: Participants responded with the number presented 
two numbers earlier while driving and performing 
touchscreen target selections. 

Each participant experienced all cognitive load conditions once, 
with the sequence randomized using a balanced Latin square. 

Under each cognitive load condition, participants completed the 
Fitts’ law task using the "ring of circles" setup. Two movement 
amplitudes were used: 𝐴1 = 70 mm and 𝐴2 = 120 mm. Each 
amplitude was combined with three target widths: 𝑊1 = 6.9 mm, 
𝑊2 = 8.6 mm, and𝑊3 = 10.3 mm. This design resulted in six distinct 
𝐴 ×𝑊 combinations, representing nominal indices of difficulty (IDs) 
ranging from 2.96 bits to 4.20 bits. As shown in Figure 2, 19 targets 
were arranged for each 𝐴 × 𝑊 set, with the first three targets used 
as practice for participant warm-up, and the remaining 16 targets 
used for data collection. Excluding practice trials, the total number 
of trials was (16 participants) × (4 cognitive load conditions) × (6 𝐴 
× 𝑊 sets) × (16 targets) = 6,144. 

3.4 Data Collection and Analysis 
This section presents the data collected under each experimental 
condition (Section 3.3) and the corresponding processing methods. 

3.4.1 Physiological Signals. We utilized pupil diameter and EDA 
to verify changes in participants’ cognitive load. A preliminary 
user study supporting this approach’s feasibility is included in the 
Appendix. Standard processing pipelines [52] were employed to 
process pupil diameter data. Blinks were removed and linearly 
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Figure 3: Gaze focus transitions and finger ballistic movement phases during pointing operations. The visual focus of attention 
is determined by the vertical relative position between the gaze point and the reference marker. The ballistic movement phase 
begins with the most dominant velocity impulse of the fingertip and concludes when the target is selected on the touchscreen. 
The dotted lines indicate that ballistic movements begin before the visual focus transitions to the screen, even before the 
transition phase. We discuss this finding in our Discussion. 

interpolated. The pupil data was low-pass filtered at 10 Hz and 
𝑍 -scored within each participant. To assess cognitive load-induced 
changes, we subtracted a baseline period (two seconds before the 
start of each block) from pupil diameter measurements. 

3.4.2 Driving Performance. We quantified driving performance 
using two metrics: lateral deviation from the road centerline and 
throttle control variability. Lateral deviation measures how well 
the driver maintains lane position. The throttle control variability 
evaluates how consistently the user manipulates the pedal. Both 
throttle and brake inputs were normalized to the [0, 1] range, with 
0 indicating no pressure and 1 indicating full depression. 

Lateral deviation was calculated as the frame-by-frame distance 
between the vehicle center and the road centerline. Curved 
segments were excluded to eliminate the confounding effects of 
their inherent cognitive demands, as noted by previous research 
[77]. For each condition, mean deviation was computed and 
normalized by subtracting the participant’s baseline, recorded after 
the practice session without any secondary task. Throttle control 
variability was evaluated using the standard deviation of throttle 
input, also excluding curved segments. These values were similarly 
normalized using each participant’s baseline driving data. 

3.4.3 Fitts’ Law Task Metrics. We employed hand tracking to 
calculate the actual moving distance for each pointing action 
and averaged these measurements to determine the effective 
amplitude. Unlike traditional Fitts’ law tasks [64] where participants 
perform a series of continuous pointing actions during a block, our 
experimental design required participants to alternate between 
steering wheel control and pointing tasks. Consequently, while 
the origin of pointer movement during continuous target selection 
would typically be the previous target circle on the "ring of circles," a 
substantial proportion of trials—those originating from the steering 

wheel to the touchscreen—had effective amplitudes (𝐴𝑒 ) much 
greater than others—those originating from the touchscreen itself. 

Research on feedback control of hand movements [15] reveals 
that an aimed pointing movement consists of a series of discrete 
corrective motions decreasing in magnitude, called “submovements.” 
By identifying the starting point of the initial ballistic phase of 
the movement, we determined the actual starting position and 
movement time for each pointing trial, enabling us to calculate 𝐴𝑒 , 
even for trials originating from the steering wheel. Thus, from a 
given 𝐴 ×𝑊 ring-of-circles condition, two (𝐼 𝐷𝑒 , 𝑀𝑇 ) ordered pairs 
could be generated, one for trials originating from the touchscreen, 
and another for trials originating from the steering wheel. 

First, we calculated the movement distance for each pointing trial. 
Using RGB images captured by a ZED 2i camera processed through 
Mediapipe [61], we obtained the 2-D position (𝑥2𝑑 , 𝑦2𝑑 ) of the 
finger in each frame. Combined with camera intrinsic parameters 
(𝑓𝑥 , 𝑓𝑦, 𝑐𝑥 , 𝑐 𝑦 ) and synchronized depth data from ZED 2i camera, we 
derived the real-time 3D position of the index finger according to: 

𝑋 = 
(𝑥2𝑑 − 𝑐𝑥 )𝑍 

𝑓𝑥 
(3)

𝑌 = 
(𝑦2𝑑 − 𝑐 𝑦 )𝑍 

𝑓𝑦 
(4) 

𝑍 = 𝐷 (𝑥2𝑑 , 𝑦2𝑑 ) (5) 
where 𝐷 (𝑥2𝑑 , 𝑦2𝑑 ) represents the depth value at the 2-D finger 
coordinates. 

As shown in Figure 3, by calculating the 3-D motion velocity of 
the fingertip, we employed the find_peaks function from Python’s 
SciPy library [101] to detect the starting point of the dominant 
impulse in the ballistic phase preceding each touch action. This 
point was established as the origin of finger movement for each 
trial. The distance from this origin to the target circle on the 
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touchscreen represented the actual movement distance for each 
pointing action, providing a more accurate measurement than 
screen-based calculations alone. A similar approach to isolating 
aimed pointing movements from continuous motion was used in 
the Input Observer by Evans and Wobbrock [26]. 

Next, we applied a Gaussian Mixture Model [85] for binary 
classification of all pointing trials per participant at each amplitude 
level. This yielded clear movement distance classification thresholds 
to differentiate the origin of each pointing action as either from 
the touchscreen or from the steering wheel. For each 𝐴 × 𝑊 
ring-of-circles condition, if five or more trials of one origin type 
were produced, we used all trials of that type to calculate 𝐴𝑒 , 𝑊𝑒 , 
𝐼 𝐷𝑒 , and 𝑀𝑇 . 𝐴𝑒 averaged the movement distance, while 𝑊𝑒 was 
calculated as 

√ 
2𝜋𝑒 × 𝑆𝐷𝑥,𝑦 , where 𝑆 𝐷𝑥,𝑦 is the bivariate standard 

deviation of touch positions in the 𝑥 and 𝑦 directions on the 
touchscreen [110]. Blocks with fewer than five trials for a particular 
origin type were discarded as outliers. For each participant under 
each cognitive load, this ultimately provided 6-12 data points (1-2 
for each 𝐴 × 𝑊 ring-of-circles condition) to fit a Fitts’ law model. 

3.4.4 Gaze and Focus of Attention. Gaze and eye movement serve 
the purpose of identifying an individual’s focus of attention (FoA) 
[93]. In our study, FoA referred to the area where the gaze 
was concentrated while participants simultaneously drove and 
interacted with a touchscreen. 

We defined ”visual distraction” in relation to the primary task of 
driving, measured as any period when the driver’s gaze was directed 
away from the road. Although both driving and touchscreen 
interactions were given as experimental tasks, we considered the 
gaze directed at the touchscreen as a ”visual distraction” from a 
driving safety perspective. We classified drivers’ gaze point (FoA) 
into three categories: 

• On-road gaze: The FoA was on the road. 
• On-screen gaze: The FoA was on the touchscreen. 
• Gaze transition: The FoA was shifting between driving and 
touchscreen pointing tasks. 

We positioned an ArUco marker [34] at the bottom edge of the 
driving simulator monitor, with the touchscreen located at the 
lower right of the monitor. As shown in Figure 3, we compared the 
relative position of the participant’s gaze point to the ArUco marker 
in real-time using the first-person camera data from Tobii Pro Glasses 
2 to determine whether the user’s FoA was on-road (gaze point 
higher than the ArUco marker) or on-screen (gaze point lower than 
the ArUco marker). Additionally, we calculated gaze point velocity 
and identified rapid eye movements exceeding three standard 
deviations during FoA transitions as the gaze transition period. 
We defined each ”visual distraction duration” as the amount of 
time participants’ gaze points left the road on the driving simulator 
monitor, which included a period of on-screen gaze and two rapid 
gaze transition periods. 

3.5 Procedure 
Prior to the experiment, participants received detailed explanations 
of the experimental procedures and data collection practices and 
provided informed consent. They were then equipped with an 

EmotiBit sensor and Tobii Pro Glasses 2. Participants adjusted the 
seat, steering wheel, and pedals to their preferred positions. 

Participants were instructed to prioritize driving safely in all 
tasks by maintaining a stable speed, staying within their lane, and 
avoiding abrupt accelerations or decelerations. Performance on the 
𝑁 -back and pointing tasks began simultaneously with the driving 
simulation. Participants were encouraged to respond accurately to 
the 𝑁 -back task and to perform touchscreen interactions for the 
target selection task “quickly and accurately.” After completing a 
single ring-of-circles for one nominal ID, participants were given 
a 30-second rest before proceeding to the next set. During each 
rest period, participants continued driving without performing the 
𝑁 -back or touchscreen tasks, and the touchscreen interface was 
deactivated (see Figure 2). 

Before the study began, participants completed three practice 
blocks, each lasting a minimum of five minutes, to familiarize 
themselves with the experimental setup and tasks. These included: 
(1) practice with the 𝑁 -back task, (2) driving practice along 
the experimental route (Figure 2), and (3) practice driving with 
the touchscreen target selection task. Participants could request 
additional practice if needed, and five of them did so. After 
the practice sessions, baseline driving behavior was recorded by 
having participants drive the specified route without additional 
tasks. Participants then sequentially experienced each cognitive 
load condition while using the touchscreen, completing the three 
questionnaires after each. Sufficient rest periods were ensured 
between conditions to mitigate fatigue. 

3.6 Statistical Analysis 
Our statistical analysis consists of two primary components. 
We first examined whether driving and touchscreen interaction 
mutually influence each other. We then assessed how cognitive 
load levels impact driver performance across multiple measures. 

3.6.1 Driving With vs. Without Touchscreen Interaction. We 
investigated the effect of touchscreen interaction on driving 
performance without the 𝑁 -back task. Using driving without 
touchscreen interaction and driving with touchscreen interaction 
as independent variables, we examined their impact on driving 
performance metrics. These include driving deviation and throttle 
control variability. A within-subjects design with two conditions 
was employed for this analysis. 

3.6.2 Touchscreen Interaction With vs. Without Driving. We 
compared touchscreen pointing performances when driving versus 
when not driving, both without the 𝑁 -back task. This analysis 
examined the effects of driving on pointing movement time, error 
rate, and throughput. A between-subjects design with two 
conditions was employed. 

3.6.3 Cognitive Load Impact. To assess the impact of cognitive 
load on drivers’ performance across multiple tasks, we employed a 
within-subjects design with repeated measures across four cognitive 
load conditions. In this experiment, participants completed 6,144 
trials in total, excluding practice trials. 

The independent variable was cognitive load level, manipulated 
through four conditions: driving without an 𝑁 -back task, with a 
0-back task, with a 1-back task, and with a 2-back task. Dependent 
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variables comprised four categories: (1) cognitive load verification 
measures (NASA-TLX ratings, pupil diameter, and EDA); (2) driving 
performance metrics (lateral driving deviation and throttle control 
variability); (3) touchscreen interaction performance (movement 
time, error rate, and pointing throughput); and (4) visual attention 
allocation (proportional distribution across FoAs, visual distraction 
duration, and the proportion of prolonged visual distraction). 

Our EDA sensor malfunctioned for one participant under one 
𝑁 -back condition. Three users experienced a loss of ArUco marker 
detection in all of their first-person videos from the Tobii Pro 
Glasses 2. We removed the affected trials accordingly. 

3.6.4 Statistical Methods. We used the Shapiro-Wilk test [90] to 
verify whether model residuals violated normality. The residuals of 
NASA-TLX ratings, throttle control variability, and the proportion 
of prolonged visual distraction were non-normally distributed, 
while other dependent variables did not violate normality. 

For normal data, we used linear mixed models (LMM) [106] 
for within-subjects designs and linear models (LM) [27] for 
between-subject designs. We used Type III F-tests [22] to assess 
statistical significance across conditions, followed by post hoc 
pairwise comparisons. 

For non-normal data, we employed the Friedman test [32] to 
examine significance across cognitive load levels, followed by 
Wilcoxon signed-rank tests [108] for post hoc pairwise comparisons. 

All post hoc tests were protected against Type I errors using 
Holm’s sequential Bonferroni procedure [45]. We report means 
and standard deviations (𝑆 𝐷) for normally distributed variables 
and medians and interquartile ranges (𝐼 𝑄𝑅) for non-normally 
distributed variables. 

4 Results 
In this section, we present our results, categorized by cognitive 
load, driving performance, touchscreen performance, and focus of 
attention. Together, these results paint a picture of how cognitive 
load affects driving and interacting with a touchscreen, and how 
the latter two affect each other. 

4.1 Cognitive Load 
We analyzed participants’ ratings on the NASA-TLX Likert items, 
changes in pupil diameter, and electrodermal activity (EDA) under 
different cognitive load conditions to verify that we successfully 
manipulated cognitive load. Recall that in our four 𝑁 -back 
conditions, we required participants to complete driving and 
touchscreen interaction with no 𝑁 -back task, with a 0-back task, 
with a 1-back task, and with a 2-back task. 

4.1.1 NASA-TLX Mental Load. Mental load scores were particularly 
high when performing the 2-back task, with the median reaching 
16 (𝐼 𝑄𝑅 = [14.0,17.0]) out of 20. The 1-back task had a median score 
of 12.5 (𝐼 𝑄𝑅 = [8.0,14.25]), followed by the 0-back task at 10 (𝐼 𝑄𝑅 = 
[6.75,12.0]) and the no 𝑁 -back task setting at 9.5 (𝐼 𝑄𝑅 = [7.75,11.0]). 
There was a statistically significant difference in mental load across 
cognitive load conditions ( 2   𝜒 (3,𝑁 =16) = 27.27, 𝑝 < .001), as shown 
in Figure 4(a). This result reflects participants’ subjective experience 
that different 𝑁 -back tasks imposed different degrees of cognitive 
load. Post hoc pairwise comparisons indicated significant mental 

load differences between all pairs of 𝑁 -back tasks (𝑝 < .01), except 
between the 0-back task and without any 𝑁 -back task. 

4.1.2 Pupil Diameter and Electrodermal Activity. There were 
significant differences in pupil diameter (𝐹 (3,45) = 2.68, 𝑝 < .05) 
and EDA (𝐹 (3,45) = 3.47, 𝑝 < .05) across cognitive load conditions, 
as is shown in Figures 4(b) - (d). These physiological sensor 
signals provide objective evidence that the different cognitive 
load conditions did indeed impose varying levels of cognitive 
load. Post hoc pairwise comparisons showed similar results as the 
self-reported mental load measures. For example, the average pupil 
diameter was significantly higher during the 2-back task condition 
(𝑝 < .05) compared to the baseline no 𝑁 -back task condition. 

The results justify our approach of treating ”different cognitive 
load levels” as our independent variable rather than simply 
”different 𝑁 -back task conditions.” 

4.2 Driving Performance 
We first examined how touchscreen interaction affects driving 
performance by comparing driving metrics with and without 
touchscreen interaction. Subsequently, we investigated driving 
performance under different cognitive load levels. 

4.2.1 Touchscreen Effects on Driving Performance. 

Lateral Deviation from the Road Centerline. Participants 
demonstrated 12.6% lower lateral deviation when driving without 
touchscreen interaction (𝑀 = 0.355𝑚, 𝑆𝐷 = 0.086𝑚) than with 
touchscreen interaction (𝑀 = 0.406𝑚, 𝑆𝐷 = 0.122𝑚). Statistical 
analysis revealed a significant difference (𝐹 (1,15)=5.22, 𝑝 < .05), 
indicating that touchscreen interaction resulted in greater lateral 
deviations from the road centerline. This finding suggests that 
engaging with touchscreen interfaces impairs lateral vehicle 
control, despite explicit instructions for participants to prioritize 
driving safety as their primary task. 

Throttle Control Variability. Analysis of throttle control 
variability showed comparable median deviations between the 
driving with touchscreen interaction condition (𝑀𝑒𝑑 = 0.052, 
𝐼 𝑄𝑅 = 0.024) and that without touchscreen interaction 
(𝑀𝑒𝑑 = 0.053, 𝐼 𝑄𝑅 = 0.076). A Wilcoxon signed-rank test indicated 
no significant difference in throttle control variability between 
driving with a touchscreen and driving without a touchscreen. 

4.2.2 Cognitive Load Effects on Driving Performance. 

Lateral Deviation from the Road Centerline. There was minimal 
difference in lateral deviation across different cognitive load 
conditions. Results showed no statistically significant effects of 
cognitive load on centerline deviation. These results suggest that 
driving precision in terms of lateral control was not substantially 
compromised by cognitive load. 

Throttle Control Variability. The Friedman test indicated no 
statistically significant effects of cognitive load on throttle control 
variability. These findings parallel our results on lateral deviation, 
demonstrating that drivers’ ability to operate the pedal was not 
significantly impaired by increasing cognitive loads. 
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Figure 4: Subjective NASA-TLX ratings of cognitive load levels and physiological measurements across different 𝑁 -back 
conditions. (a) Mental workload. Boxes represent quartiles. (b) Mean pupil diameter. Error bars represent standard deviation. (c) 
Mean electrodermal activity (EDA). (d) Mean changes in pupil diameter during Fitts’ law Task blocks under different 𝑁 -back 
task conditions, with shading indicating the standard error. ***:𝑝 < .001,**:𝑝 < .01,*:𝑝 < .05. 

4.3 Touchscreen Pointing Speed and Accuracy 
We first compared pointing performance under driving scenarios 
with the baseline throughput obtained by seated but non-driving 
participants (see Section 3.2.4). We then further analyzed the 
movement time, accuracy, and throughput of participants’ 
touchscreen pointing while driving under different cognitive loads. 

4.3.1 Effects of Driving on Touchscreen Pointing. 

Speed and Accuracy. The average movement time rapidly 
increased from 564 ms (𝑆𝐷 = 92) without driving to 1140 ms (𝑆𝐷 = 
205) with driving. Movement time was statistically significantly 
slower under driving conditions (𝐹 (1,22) = 56.1, 𝑝 < .001). Similarly, 
error rate increased from 5.6% (𝑆 𝐷 = 4.0) without driving to 11.6% 
(𝑆 𝐷 = 9.2) with driving. However, due to substantial individual 
differences in target selection precision, this difference was not 
statistically significant. 

Throughput. Without driving, the average throughput was 5.78 
bits/s (𝑆 𝐷 = 0.66), while driving without an 𝑁 -back task reduced 
target selection throughput by 58.1% to 2.42 bits/s (𝑆𝐷 = 0.52). 
Statistical analysis revealed that this was a significant reduction in 
pointing throughput (𝐹 (1,22)=187.8, 𝑝 < .001). 

4.3.2 Effects of Cognitive Load on Touchscreen Pointing. 

Speed and Accuracy. There was a significant effect of cognitive 
load on movement time (𝐹 (3,𝑁 =45) = 10.13, 𝑝 < .001), as shown in 
Figure 5. Post hoc pairwise comparisons showed during the 2-back 
task, the movement time was significantly longer than that without 

Figure 5: Movement time. Error bars represent standard 
deviation. ***:𝑝 < .001,**:𝑝 < .01,*:𝑝 < .05. 

an 𝑁 -back task (𝑡 (45) = 5.41, 𝑝 < .001), with a 0-back task (𝑡 (45) = 
-3.592, 𝑝 < .005), and with a 1-back task (𝑡 (45) = -3.284, 𝑝 < .01). 
As the cognitive load increased, the mean of 1140 ms (𝑆𝐷 = 205) 
for movement time without an 𝑁 -back task significantly increased 
by 20.2% to 1370 ms (𝑆 𝐷 = 137) for pointing while performing the 
2-back task. 

Although increasing cognitive load resulted in increased 
movement time, error rates showed no significant difference across 
different cognitive load levels. The error rate during the 2-back 
task was 12.2% (𝑆𝐷 = 9.3%), similar to the 11.6% (𝑆 𝐷 = 9.2%) under 
the no 𝑁 -back task condition. The large standard deviations 
indicate substantial individual differences in pointing accuracy. 
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Figure 6: Pointing Throughput. Error bars represent standard 
deviation. *:𝑝 < .05. 

These results suggest that under higher cognitive loads, 
participants’ motor systems tended to sacrifice pointing speed 
while maintaining pointing accuracy. 

Touchscreen Pointing Throughput. A main motivation for this 
work was to investigate whether different cognitive loads during 
driving influence throughput, the combined speed-accuracy 
measure of pointing efficiency produced by Fitts’ law. Figure 6 
shows the effect of cognitive load on throughput. 

Without an 𝑁 -back task, throughput was 2.42 bits/s (𝑆 𝐷 = 
0.52). Throughput for the 0-back task was similar (𝑀 = 2.37, 
𝑆𝐷 = 0.48), followed by the 1-back task (𝑀 = 2.19, 𝑆𝐷 = 0.47) 
and 2-back task (𝑀 = 2.01, 𝑆𝐷 = 0.32). There was a significant 
effect of cognitive load on throughput (𝐹 (3,45) = 4.10, 𝑝 < .05). 
Post hoc pairwise comparisons showed that when the cognitive 
load was highest (i.e., during the 2-back task), throughput was 
significantly lower than without an 𝑁 -back task (𝑡 (45) = 3.15, 
𝑝 < .05), and with a 0-back task (𝑡 (45) = 2.76, 𝑝 < .05). The 
standard deviations indicate substantial individual differences in 
pointing performance. However, the statistically significant results 
demonstrate that performance degradation consistently occurs with 
increased cognitive load. 

4.4 Focus of Attention 
When participants were driving while pointing on the touchscreen, 
their visual attention switched repeatedly between the road and 
the touchscreen. Based on eye tracking results, we calculated 
the distribution of participants’ visual attention, the duration 
of each visual distraction, and the proportion of prolonged 
visual distractions. We checked if these metrics had significant 
associations with cognitive load. 

First, we divided foci of attention into on-road gaze, on-screen 
gaze, and gaze transitions, as shown in Figure 7. There was no 
significant difference in the proportional duration of the three foci of 
attention under different cognitive loads. However, as cognitive load 
increased, the proportion of participants’ visual attention on the 
road increased from 42.8% to 49.8%, with corresponding decreases 
in the proportion of gaze time on-screen and in transition. 

One possible reason to explain why participants spent a smaller 
proportion of time on pointing tasks is that they reduced their 
frequency of switching from driving to touchscreen pointing. 
Another possibility is that high cognitive load caused participants to 

Figure 7: Proportion of focus of visual attention across 
different 𝑁 -back conditions. 

shorten the duration of each focus of attention on the touchscreen 
and gaze transition. 

Significance testing showed no difference in the frequency of 
gaze switches from driving to the screen across different cognitive 
loads. Switch frequency ranged from 24.5 times per minute to 27.3 
times per minute, with no consistent trend of change as cognitive 
load levels increased. Thus, the following paragraphs quantitatively 
check the visual distraction duration. 

Figure 8: Mean duration of each visual distraction across 
different 𝑁 -back conditions. 

4.4.1 Visual Distraction Duration. As defined earlier, visual 
distraction refers to periods in which the driver’s gaze is directed 
away from the road toward the touchscreen. As is shown in 
Figure 8, there is a significant difference between visual distraction 
durations under different cognitive loads (𝐹 (3,36) = 12.98, 𝑝 < .05). 
When cognitive load increased, participants’ gaze remained on the 
touchscreen for shorter periods before they needed to return 
their visual attention to the driving task. 𝑃𝑜𝑠𝑡 − ℎ𝑜𝑐 pairwise 
comparisons showed that with a 2-back task, the mean visual 
distraction duration (𝑀 = 889 ms, 𝑆 𝐷 = 327) was significantly 
shorter (𝑡 (36) = 3.52, 𝑝 < .01) than without a 𝑁 -back task 
(𝑀 = 1207 ms, 𝑆 𝐷 = 347). 

4.4.2 Prolonged Visual Distraction. 𝑁 -back task𝑁 -back task The 
NHTSA proposed a 2-second rule through a series of quantitative 
studies: each visual distraction duration for drivers should be less 
than 2 seconds to ensure safe driving [74]. Therefore, we calculated 
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Figure 9: Distribution of visual distraction duration from 
driving under no N -back task and with 2-back task 
conditions, with curves representing lognormal distribution 
fits. Under the no N -back task condition, prolonged visual 
distractions occur significantly more frequently. 

the proportion of participants’ visual distractions exceeding 2000 
ms to check whether our participants adhered to the 2-second rule. 

There is a significant difference in the proportion of prolonged 
visual distractions (defined as greater than 2000 ms) under different 
cognitive loads (𝜒 2(3,𝑁 =13) = 9.09, 𝑝 < .05), shown in Figure 9. 
Without a 𝑁 -back task, 16.0% (𝑆𝐷 = 13.3%) of visual distractions 
exceeded 2 seconds, which is defined as potentially hazardous [74]. 
However, with a 1-back or 2-back task, the proportion of prolonged 
visual distractions decreased to 9.4% (𝑆𝐷 = 9.5) and 7.2% (𝑆𝐷 = 
6.8), respectively. Post hoc pairwise comparisons revealed that the 
proportion of prolonged visual distractions was significantly higher 
without the 𝑁 -back task compared to the condition with a 2-back 
task (𝑡 (36) = −3.385, 𝑝 < .05). High cognitive load reduced visual 
distraction duration, but given that participants maintained driving 
safety to the same degree under different cognitive loads, a lower 
rate of prolonged visual distraction clearly cannot indicate safer 
driving. 

4.5 Hand-Before-Eye Coordination Patterns 
When participants were driving while performing a pointing task on 
the touchscreen, their visual attention switched repeatedly between 
the road and the touchscreen, while simultaneously executing target 
selection hand movements. We analyzed the temporal sequence 
between each ballistic hand movement and visual transition to 
the touchscreen to examine coordination between participant hand 
movements and visual attention allocation, as illustrated in Figure 3. 

Unexpectedly, even without an 𝑁 -back task, ballistic movements 
preceded gaze transitions to the touchscreen in 62.9% (𝑆𝐷 = 39.6) 
of the pointing trials. This "hand-before-eye" pattern remained 
consistent across different cognitive load conditions: 64.4% (𝑆𝐷 = 
35.8) with a 0-back task, 71.9% (𝑆 𝐷 = 27.2) with a 1-back task, 
and 71.1% (𝑆𝐷 = 24.6) with a 2-back task. Although there were no 
statistically significant differences between conditions, prevalence 
of this pattern was consistently high and showed a gradual increase 

with higher cognitive load, suggesting a fundamental adaptation in 
motor-visual coordination during multitasking. 

4.6 Subjective Measures 
There is a significant increase in mental demand (𝜒 2(3,𝑁 =16) = 
27.27), physical demand (𝜒 2(3,𝑁 =16) = 26.78, 𝑝 < .001) and time 
pressure ("hurried or rushed") ratings (𝜒 2(3,𝑁 =16) = 20.78, 𝑝 < .001) 
with cognitive load. Participants reported feeling significantly 
less successful in task completion as cognitive load increased 
(𝜒 2(3,𝑁 =16) = 9.87, 𝑝 < .05). Affective states were similarly 
impacted, with participants reporting feeling significantly less in 
control (𝜒 2(3,𝑁 =16) = 8.38, 𝑝 < .05) and less confident (𝜒 2(3,𝑁 =16) 
= 8.87, 𝑝 < .05) in their abilities as cognitive load increased. 
Despite a higher workload, participants reported feeling more active 
(𝜒 2(3,𝑁 =16) = 8.76, 𝑝 < .05) during the 2-back condition compared 
to easier conditions. These subjective findings complement our 
behavioral measures by demonstrating that increased cognitive 
load not only impairs touchscreen interaction performance but also 
substantially alters drivers’ perceived task load, confidence, and 
emotional state during in-vehicle touchscreen interactions. 

5 Discussion 
The goal of this study was to investigate the impact of cognitive 
load on in-vehicle touchscreen interactions and driving behavior. 
Our findings reveal that during multitasking involving driving 
and touchscreen interaction, these activities mutually affect each 
other, degrading their respective performance metrics. Pointing 
throughput decreased by 58.1% (Section 4.3.1), while lateral driving 
deviation also showed significant changes (Section 4.2.1). Changes 
in cognitive load potentially lead to further redistribution of visual-
motor resources during this multitasking, exacerbating these effects. 
Although driving performance did not show significant variations 
due to our experimental design prioritizing driving safety (Section 
4.2.2), pointing throughput significantly decreased by 20.2% as 
cognitive load increased (Section 4.3.2). Analyzing the focus of 
visual attention, we found that as cognitive load increased, drivers 
reduced their visual distraction time by 26.3%, from 1207 ms to 
889 ms, when switching from driving to touchscreen interaction 
(Section 4.4), potentially reducing the number of target selections 
completed during each gaze transition. 

In this section, we first discuss how driving and touchscreen 
interaction mutually influence each other, then further examine 
how increasing cognitive load affects various tasks during 
multitasking. We explore interesting behavioral pattern changes 
that cognitive load and multitasking induce in users, and propose 
several design guidelines for in-vehicle touchscreens. 

5.1 Mutual Influence Between Touchscreen 
Interaction and Driving 

Previous works [38] have investigated how touch interaction 
affects driving performance. Our research further validates their 
conclusions while demonstrating that this influence actually exists 
bidirectionally, regardless of the driver’s cognitive load level. 

For driving performance, after touchscreen interaction 
was introduced, although throttle control variability showed 
no significant change, participants’ steering wheel control 
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Figure 10: Participant 6’s Fitts’ law model fit. The black baseline represents tasks completed in a non-driving state. 

significantly decreased, with lateral deviation from the road center 
increasing from 0.086 m to 0.122 m, revealing the potential dangers 
touchscreen interaction poses to driving safety. 

In addition, we focused more on examining how driving degrades 
touchscreen pointing performance. Pointing throughput decreased 
dramatically by 58.1%, indicating that participants were not only 
mentally affected by driving but also physically performed clicking 
actions much slower. 

To explain this phenomenon, we analyzed Fitts’ law models for 
individual participants and surprisingly discovered that movement 
time no longer exhibited typical sensitivity to the effective index 
of difficulty (𝐼 𝐷𝑒 ) across all cognitive loads when driving. As an 
example, Figure 10 shows P6’s models. While movement time 
increased with rising cognitive load, it remained almost unchanged 
with rising 𝐼 𝐷𝑒 . In contrast, P6’s movement time increased with 
𝐼 𝐷𝑒 in the standard Fitts’ law task without driving. 

We propose that this phenomenon can be explained by 
participants’ ballistic finger movements and visual attention 
allocation during pointing actions. As reported in Section 4.5, 
even without an 𝑁 -back task, ballistic movements preceded 
gaze transitions to the touchscreen in 62.9% of pointing trials. 
This inverted motor-visual sequencing primarily explains the 
observed insensitivity of movement time to 𝐼 𝐷𝑒 when driving. In 
contrast to standard Fitts’ law paradigms that predominantly 
model motor control capabilities, our driving multitasking 
paradigm incorporated the process of visual attention-shifting and 
target acquisition into the recorded pointing movement time. 
These observations align with what we noticed during the 
experiment—participants’ finger movements often exhibited 
very brief hovering and hesitation during ballistic movement, 
transforming the process from a “rapid ballistic movement phase” 
into a multi-step process waiting for visual feedback to correct the 
motor system. This “hand-before-eye” mechanism also explains 
the observation of transient hand-hovering or circling behaviors, 
likely representing movement initiation based on prior motor 
experience, followed by mid-trajectory pauses awaiting visual 
confirmation after target acquisition. 

5.2 Impact of Cognitive Load on Touchscreen 
Interaction and Driving 

Most of our experimental results examined how different cognitive 
load levels further affect touchscreen and driving performance. 
Participants’ mental resources indeed decreased under high 
cognitive load, but they prioritized driving safety, maintaining the 
driving performance while touchscreen interaction performance 
and the attention allocated to touch interaction significantly 
decreased. 

For driving itself, we emphasized in instructions that participants 
should prioritize driving tasks as if they were actually driving rather 
than playing an immersive game. Consequently, driving lateral 
deviation and throttle control variability showed no significant 
differences, suggesting that participants were maintaining good 
driving performance as instructed. 

On the other hand, touchscreen pointing performance showed 
significant degradation. Our post hoc pairwise comparisons 
of pointing throughput revealed that both movement time 
per touch and pointing throughput significantly decreased 
under high cognitive load. As the cognitive load increased, the 
“hand-before-eye” pattern became more pronounced. Under 2-back 
conditions, the average single pointing duration even exceeded 
each on-screen glance duration, demonstrating participants’ 
limited visual attention during target selection. 

Higher cognitive load led to shorter visual distractions. 
Conversely, in the Fitts’ study, pointing time actually increased 
as cognitive load increased. This opposite trend resulted in a 
reduction in the number of pointing trials participants could 
complete during each on-screen gaze period, from 1.30 times 
(𝑆 𝐷 = 0.41) without an 𝑁 -back task to 1.09 times (𝑆𝐷 = 0.66) with 
the 2-back task. These findings suggest that higher cognitive load 
limited drivers’ ability to maintain prolonged visual attention and 
to perform consecutive pointing actions. Additionally, participants 
showed reduced engagement with the Fitts’ task under increased 
cognitive load, suggesting a constraint on attentional resources. 
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As shown in Figure 9, high cognitive load reduced visual 
distraction duration, nearly eliminating prolonged distractions 
based on the 2-second safety rule. However, since driving safety 
remained consistent across load levels, fewer prolonged distractions 
do not necessarily indicate safer driving. This suggests the threshold 
for unsafe visual distraction may depend on cognitive load. 

5.3 Design Guidelines For In-Vehicle Touch 
Interfaces 

Our findings offer guidelines for designing cognitive load-aware 
adaptive touch interfaces. With the increasing availability of 
wearable sensors and in-cabin sensing technologies, real-time 
cognitive load estimation is becoming feasible. Below, we provide 
adaptive strategies based on specific empirical insights from 
our study, focusing on motor-visual behavior, physiological and 
behavioral cues, and interaction bottlenecks under multitasking 
pressure. 

Detectable Signals of Cognitive Load via In-Vehicle Sensors. 
Beyond traditional physiological indicators such as pupil diameter 
and electrodermal activity (EDA), our study highlights a 
novel and actionable behavioral signal of cognitive load: the 
“hand-before-eye” coordination pattern. Under higher cognitive 
load, drivers frequently initiate ballistic hand movements before 
shifting their gaze. This anticipatory motor action becomes more 
prevalent as cognitive demands increase, suggesting it reflects an 
internal sense of time pressure. This behavior can be detected 
using lightweight sensing technologies, such as eye-tracking 
systems to monitor gaze direction and capacitive touch sensors 
on the steering wheel to identify hand-off events. By analyzing 
the relative timing between hand departure from the wheel and 
subsequent gaze transition to the screen, systems can infer 
real-time cognitive load. This approach offers a low-cost, scalable 
method for integrating behavioral markers into cognitive load 
estimation frameworks. 

Adaptive Visual Search Efficiency. Our findings indicate that the 
primary bottleneck in touchscreen interaction under high cognitive 
load is likely not motor capability but rather the visual search 
latency required to locate targets after shifting gaze from the road 
to the screen. Increasing button size alone did not significantly 
improve performance, suggesting that physical targeting was 
not the dominant constraint. This result highlights the need for 
adaptive user interfaces that enhance visual saliency rather than 
relying solely on target enlargement. For instance, interfaces 
can dynamically increase perceptual prominence using contrast 
enhancements, ambient lighting adjustments, or subtle animations 
to draw attention to actionable elements. During cognitively 
demanding moments, systems could also re-prioritize interface 
layouts to elevate critical controls while suppressing less relevant 
options. Overly dense layouts should be avoided, as they may 
elevate search costs even if they optimize for screen space. Taken 
together, these findings call for a shift from size-focused designs 
to visually optimized interfaces that support fast, accurate target 
acquisition under multitasking. 

Minimize Multi-Step Interactions During High Cognitive Load. 
Under high cognitive load, participants completed only 1.09 to 

1.30 touchscreen interactions per glance, while movement times 
increased by 20.2% and visual distraction durations decreased 
by 26.4%. These findings indicate that drivers, when cognitively 
taxed, are unable to sustain multi-step interaction sequences 
within a single attention window. Interaction performance becomes 
constrained not by motor ability but by the temporal limits of safe 
visual disengagement from the road. To mitigate this limitation, 
interface designers should implement adaptive task flattening 
strategies that minimize the number of steps required to complete 
an interaction. For example, frequently used functions should be 
surfaced as one-tap actions when high cognitive load is detected. 
Additionally, user interface flows can be dynamically simplified 
(e.g., reducing nested menus or multi-stage confirmations) based 
on real-time estimates of cognitive demand. 

Adaptive Alerts for Prolonged Gaze. The NHTSA’s fixed 2-second 
off-road glance threshold is based on the assumption of uniform 
attentional capacity across all cognitive states. However, our 
findings show that under high cognitive load, drivers’ off-road 
glances naturally shorten to an average of 889 ms, reflecting 
an implicit self-regulation strategy to maintain driving safety. 
This finding suggests that static thresholds may not adequately 
account for the dynamic nature of attentional resources. To address 
this, future driver-assistance systems should adopt cognitive load-
sensitive thresholds for visual distraction warnings. When high 
cognitive load is detected, systems should initiate earlier warnings. 

Non-Visual Feedback for Target Acquisition. The observation that 
participants’ hands moved for targets before their eyes looked 
for those targets indicates they had prior expectations about the 
touchscreen and approximate target locations. For touch interaction 
tasks, in-vehicle touchscreens can incorporate haptic and audio 
feedback as indicators of target selection or provide cues for 
target acquisition, thereby reducing visual distraction. For example, 
auditory or tactile feedback can serve as click confirmation. Haptic 
feedback can also enable the hand to function as a sensor, effectively 
giving virtual buttons physical properties [82]. 

5.4 Generalizing 𝑁 -back Tasks To Real 
Scenarios 

Based on four different cognitive load levels in our study, we 
can generalize our experimental findings to real-world scenarios 
studied in previous research and quantify the cognitive load in 
these scenarios [25]. 

Specifically, driving without a 𝑁 -back task can directly represent 
similar real driving scenarios. The 0-back task, which only involves 
hearing and repeating a number, parallels everyday activities such 
as listening to music or passive conversation. Our NASA-TLX 
mental load measurements and physiological signal analyses 
indicated no significant differences in cognitive load between 
having no 𝑁 -back task and the 0-back task. Notably, even in these 
relatively low-demand conditions, on a 20-point scale, the mental 
load associated with continuous touchscreen interaction remains 
moderate (𝑀 = 9.5 without an 𝑁 -back task, 𝑀 = 10.0 with a 0-back 
task), highlighting the need for greater attention to the potential 
risks posed by excessive in-vehicle touch interaction. 
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The 1-back and 2-back tasks involve moderate and high-intensity 
memory functions, information processing, and retrieval, similar 
to real-world activities such as texting, phone conversations, or 
engaging in intense discussions. We observed a significant increase 
in cognitive load under these conditions, along with notable changes 
in pointing accuracy, throughput, and visual attention patterns. 
These findings suggest that touch interfaces and regulations for 
use under moderate to high cognitive load conditions may require 
specialized design considerations. 

Beyond driving, we expect our results to extend to other high-
demand, touch-based interaction contexts, such as factory operators 
monitoring equipment [54], people using phones while moving [59], 
surgeons interacting with touchscreen displays [17], or pilots and 
performance drivers [95] managing complex controls. In each 
context, divided attention similarly degrades touch accuracy and 
speed, highlighting the need for adaptive, context-aware interface 
designs. 

6 Limitations and Future Work 
Our study has several limitations that should be acknowledged. 
Participants were explicitly instructed to prioritize driving safety 
over touchscreen performance. While realistic, this instruction may 
have constrained our observations of trade-offs between driving 
and touchscreen tasks under varying cognitive loads. Moreover, 
even under low cognitive load, inattention remains dangerous— 
a concern that will grow as driving automation alters attention 
allocation. 

Although our high-fidelity simulator afforded precise control 
over task parameters, it inevitably falls short of capturing the 
full complexity and emotional stakes of real-world driving. We 
simplified the scenario (minimal interactions, no other cars or 
pedestrians) to reduce extraneous variability, yet this choice limits 
ecological validity. Likewise, our ring-of-circle target arrangements, 
while convenient for controlled analysis, does not reflect the various 
layouts and presentations of production vehicle interfaces. Future 
research should embrace more naturalistic designs, for example 
by incorporating traffic lights, dynamic road scenarios, rich UI 
elements, and immersive settings (e.g., virtual reality, instrumented 
test tracks, a Drive-In Lab system [53]) to observe how drivers 
spontaneously allocate attention when mental demands are high. 

Our multidimensional cognitive load assessment, which paired 
subjective (NASA-TLX) and physiological (pupil diameter and EDA) 
measures, provided complementary insights but was not without 
its challenges. EDA signals suffered noise from steering and hand 
movements, and pupil measurements are sensitive to ambient 
lighting. Integrating additional neural measures such as functional 
near-infrared spectroscopy (fNIRS) [29] or electroencephalography 
(EEG) [1] could provide more precise correlates of cognitive load. 

Looking ahead, another promising avenue for future research is 
to examine individuals with extensive multitasking training, such as 
professional pilots or emergency response operators. These experts 
are known to operate effectively under high cognitive loads while 
performing complex tasks. Comparing their performance to that 
of general drivers could help isolate whether the performance 
degradation observed in touchscreen interactions and driving 

behavior is primarily driven by the inherent cognitive load or by 
limited multitasking ability. 

Finally, our findings suggest potential benefits from cognitive 
load-aware interfaces, but we have not yet implemented or 
tested such adaptive systems. Future work should develop and 
evaluate interfaces that dynamically adjust based on detected 
cognitive load levels. These systems could incorporate real-time 
monitoring of physiological signals, hand and eye movements, or 
certain driving behaviors to dynamically modify interface elements, 
information density, presentation style, animation timing, and 
feedback modalities. User studies could assess how drivers respond 
to such adaptive interfaces over time and whether these interfaces 
enhance both safety and user experience. 

7 Conclusion 
This study quantifies how cognitive load affects drivers’ 
touchscreen interactions and visual attention. It also quantifies 
how interacting with a touchscreen affects driving performance, 
and how driving affects touchscreen performance. We 
manipulated cognitive load using an auditory 𝑁 -back task and 
verified successful manipulation through subjective responses, 
physiological responses, and interaction measurements. The 
concurrent performance of driving and touchscreen tasks 
demonstrates significant mutual interference, with driving causing 
a 58.1% reduction in pointing throughput and touchscreen use 
resulting in a 41.9% increase in lateral vehicle deviation. Higher 
cognitive loads significantly affected touchscreen interaction 
efficiency, with movement time increasing by 20.2% in the highest 
cognitive load condition and throughput decreasing by 16.9%, from 
2.42 bits/s to 2.01 bits/s. Pointing accuracy was maintained at the 
expense of speed, resulting in this lower throughput. Drivers 
naturally adapted their visual strategies under increased cognitive 
load, reducing visual distraction durations by 26.4%, suggesting 
instinctive preservation of the primary driving task by limiting 
visual engagement with secondary tasks when cognitive resources 
were constrained. We observed more prolonged visual distractions 
under low cognitive loads, potentially creating safety risks despite 
drivers’ perceived attentional capacity. A ”hand-before-eye” 
movement pattern, where ballistic movements of the hand 
preceded gaze transitions, occurred in 71.9% of movements, 
offering an opportunity for low-cost detection of cognitive load 
levels. 

This research advances our understanding of driver-touchscreen 
interactions and informs potentially safer in-vehicle interface 
designs by quantifying how cognitive load affects the interplay 
between cognitive demands, visual attention, and motor 
performance during driving and touchscreen pointing tasks. 
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A APPENDIX: FEASIBILITY STUDY 
We ran an initial feasibility study to test our ability to induce 
cognitive load and measure related changes in physiological arousal 
in a task that involved driving-like movements (i.e., wheel and pedal 
adjustments). We additionally did not constrain head movements 
or control for luminance, factors that can introduce artifacts 
into measures of physiological arousal (e.g., pupils, electrodermal 
activity). We ran a version of the box task [72, 97], a task introduced 
as a more robust and generalizable alternative to the lane-change 
task [68] for research on distracted driving. During this task we 
manipulated participants’ cognitive load while recording motor 
movements (steering wheel and pedal positions) and levels of 
physiological arousal via pupillometry and measures of EDA. 

A.1 Participants 
Twenty-four participants (12 identifying as women, 12 identifying 
as men) were recruited from the local community. Participants were 
all above 18 years of age, had valid drivers’ licenses (median 19 
years of driving experience), and normal or corrected-to-normal 
vision. Data from three participants were omitted: two participants 
fell asleep during the task, and the eyetracker would not work for 
another. These participants’ data were omitted before any data 
analysis. The study design was reviewed and approved by an 
institutional review board, and all participants provided informed 
consent. 

Figure 11: (a) Box task. (b) Auditory 𝑁 -back task. 

A.2 Materials and Methods 
A.2.1 Box Task. We implemented a version of the Box Task [97] 
on a desktop computer connected to a 27" LCD monitor and a 
Logitech G29 Driving Force racing wheel and pedal setup. In this 
task, participants use the steering wheel and pedals to control the 
size and position of a square on a computer screen (Figure 11a). The 
goal of the Box Task is to position a blue square between a larger 
and smaller yellow square, such that the edges of the blue square do 
not move outside the boundary of the larger square or within the 
boundary of the smaller square. Throughout the task, the lateral 
position of the blue square slowly drifts left or right at a rate of 
0.010 Hz. Concurrently, the size of the blue square drifts such that 
it grows or shrinks at a slightly faster rate of 0.125 Hz (for exact 
function controlling box position and size, refer to [97]). To keep the 
blue square in the goal position, participants turn the steering wheel 
to counteract the lateral drift and press either the accelerator or 
brake pedal to increase or decrease the size of square, respectively. 
Participants were given a series of instructions, practice trials, and 
a practice test to ensure that they understood the controls and the 
goal of the task before starting the main experiment. 

A.2.2 Auditory 𝑁 -back Task. Cognitive load was manipulated by 
having participants perform an auditory 𝑁 -back task. In this task, 
participants heard an auditory sequence of numeric digits between 1 
and 4 played in noise-canceling headphones and were asked to make 
a response using paddles at the back of the steering wheel based 
on numbers they heard n trials back. There were three conditions: 

• 0–back: press any paddle when a number is heard. 
• 1–back: press paddle to indicate whether the current number 
is the same or different from the number heard on the 
previous trial. 

• 2–back: press paddle to indicate whether the current number 
is the same or different from the number heard 2 trials back. 

Because we only required same/different responses (rather than 
repeating the number head 𝑁 -trials back), we restricted the number 
of digits to 4 to ensure a higher probability of ”same” occurrences 
in the 1– and 2–back conditions (and avoiding high accuracy for 
simply answering ”different” on every trial). 

Participants completed blocks of 𝑁 -back trials while 
concurrently performing the box task. Each block consisted of a 
sequence of 10 numbers with a 2.5-second inter-stimulus interval. 
Two seconds before the start of the block, text appeared above the 
large yellow square indicating the 𝑁 -back condition that would 
follow. During the 𝑁 -back trials, text appeared to the left and right 
of the large square indicating which paddle was to be pressed 
for ”same” and ”different” responses. The response order was 
randomized between 𝑁 -back blocks. 

Participants completed a total of 15 blocks of 𝑁 -back trials (5 
blocks of each 𝑁 -back level, with the order randomized between 
participants). A 20-second break was given between each block of 
𝑁 -back trials. 

A.2.3 Physiological measures. As participants completed the box 
task and 𝑁 -back task, we recorded participants’ gaze, pupil 
diameter, and EDA. Eye tracking was done with a desk-mounted 
EyeLink 1000+ (SR Research) with the Remote Camera upgrade 
to allow participants to move their head freely. Gaze and pupil 
diameter were recorded at 500 Hz. EDA was recorded using an 
Empatica E4 wristband sampling at 4 Hz. 
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A.2.4 Data Processing and Analysis. Pupil data were processed 
using a standard pupil processing pipeline [51]. Artifacts from 
blinks were removed from the pupil trace and missing samples were 
linearly interpolated. The pupil signal was then passed through 
a low-pass filter with a 10 Hz cutoff and the residual effects of 
blinks and saccades were removed using the FIRDeconvolution 
library [51]. Last, pupils were 𝑍 -scored within participants. For our 
subsequent analysis, pupil diameter during each 𝑁 -back block was 
subtracted from a baseline period (2-second period before the start 
of the 𝑁 -back block; Figure 14). 

EDA was processed using the pyEDA package [2]. The raw EDA 
signal was decomposed into both tonic and phasic components. 
Similar to pupils, to assess changes in EDA induced by different 
levels of cognitive load, we subtracted baseline EDA recoded 2 
seconds prior to each block from the EDA signal recorded during 
each 𝑁 -back block. 

A.3 Results 

Figure 12: Participant response times and proportion correct 
scores on the 𝑁 -back task. Accuracy is omitted for 0-back 
because there were no correct or incorrect responses. Bars 
indicate means and error bars indicate on standard error of 
the mean. ***:𝑝 < .001. 

A.3.1 Performance decreases as 𝑁 -back difficulty increases. To 
ensure that our cognitive load manipulation had the desired effect, 
we examined whether participant response times increased and 
accuracy decreased, with an increase in 𝑛 on the 𝑁 -back task. As 
expected, participants responded more slowly and less accurately 
as 𝑛 increased (Wilcoxon signed-rank tests measuring differences in 
response times between 𝑁 -back conditions: all 𝑝 < .004; difference 
in accuracy between 1-back and 2-back: 𝑝 < .001; Figure 12). These 
results indicate that participants experienced more cognitive load 
with greater 𝑛. 

A.3.2 Cognitive load increases tonic physiological arousal. We 
next examined whether our cognitive load induction influenced 
physiological arousal responses measured by pupil diameter and 
EDA. Cognitive load had a robust influence on pupil diameter. As 𝑁 -
back increased, so too did average pupil diameter, with a particularly 
large difference in the 2-back condition compared to 0-back and 
1-back (linear mixed effects model with random intercepts for each 
participant contrasting mean baseline-corrected pupil diameter 
between 𝑁 -back conditions: 1-back vs 0-back: 𝛽 = 0.30, 𝑝 = .005; 
2-back vs 0-back: 𝛽 = 0.93, 𝑝 < .001; 2–back vs 1–back: 𝛽 = 0.63, 
𝑝 < .001; Figure 14a,b). 

Cognitive load has a similar but less pronounced effect on slower, 
tonic changes in EDA (Figure 14c,d). Average changes in tonic EDA 
from baseline were higher in the 2-back compared to the 0-back 
task (𝛽 = 0.35, 𝑝 < .001), but only marginally higher in the 2-
back compared to the 1-back (𝛽 = 0.18, 𝑝 = .079). There was no 
significant difference in tonic EDA between the 1–back and 0-back 
blocks (𝛽 = 0.17, 𝑝 = .107). There were additionally no differences 
in average phasic EDA across 𝑁 -back conditions (all |𝛽 |s< 0.14, all 
𝑝 s> .206). 

Figure 13: Influence of cognitive load on box task 
performance. Bars indicate means and error bars indicate on 
standard error of the mean. ***:𝑝 < .001, *: 𝑝 < .05. 
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Figure 14: Influence of cognitive load as induced by an 𝑁 -back task on physiological responses. (a, c) Changes in pupil diameter 
(a) and electrodermal activity (EDA; c) during the auditory 𝑁 -back task. Solid lines in (a) and (c) correspond to between-subject 
means and shaded regions correspond to one standard error of the mean. (b, d) Average changes in pupil diameter (b) and tonic 
EDA (d) by 𝑁 -back condition. Bars in (b) and (d) indicate overall averages and error bars indicate one standard error of the 
mean. ***: 𝑝 < .001, **: 𝑝 < .01, . : 𝑝 < .10, n.s.: not significant. 

A.3.3 Cognitive load has little impact on Box Task performance. We 
last explored whether increased cognitive load could be detected 
on the performance metrics of the box task. Overall, participant 
performance was quite high irrespective of cognitive load, with very 
few explicit positional errors (i.e., where the blue square touched 
either yellow square) committed across the experiment (median 
proportion time spent with blue square in error state [standard 
error of the mean] — 0-back: 0.014 [0.005], 1-back: 0.016 [0.010], 
2-back: 0.025 [0.013]; signed rank tests comparing positional error 
rates across N -back conditions — all 𝑝 s> .118). 

Cognitive load had a small but inconsistent impact of people’s 
ability to position the blue square in the goal position, even if 
explicit positional errors were low (Figure 13). As cognitive load 
increased, the absolute center position of the blue square tended 
to drift away from the center of the screen (linear mixed effects 
model contrasting the influence of different 𝑁 -back conditions on 
log absolute lateral deviation from center — 1–back vs 0–back: 
𝛽 = 0.09, 𝑝 = 0.038; 2–back vs 0–back: 𝛽 = 0.20, 𝑝 < .001; 2–back 
vs 1–back: 𝛽 = 0.11, 𝑝 = .013). However, cognitive load did not 
have a consistent influence on the variability of the blue square’s 
position on the screen, measured by the average standard deviation 

of the square’s position on the screen. Variability was slightly 
higher in the 2–back vs the 1–back condition (linear mixed effects 
model contrasting log standard deviation of square position across 
different 𝑁 -back conditions — 2–back vs 1–back: 𝛽 = 0.85, 𝑝 = .034) 
but no different than the 0–back condition (𝛽 = 0.50, 𝑝 = .208) or 
between the 1–back and 0–back conditions (𝛽 = 0.34, 𝑝 = .388; 
Figure 13). 

Cognitive load had less of an impact on people’s ability to adjust 
the size of the blue square with the accelerator and brake pedals. We 
first measured people’s tendency to let the size of the square drift 
away from its size at the start of the task, the optimal size to keep 
the square away from the edges of the yellow squares. Cognitive 
load did not influence participants’ tendency to let the size of the 
square drift farther from the optimal size (linear mixed effects model 
contrasting log absolute deviation in square size compared to the 
start of the task — all |𝛽 |s< 2.6, all 𝑝s> .365; Figure 13). Variability 
in the size of the square did differ between 𝑁 -back conditions, but 
not consistently with cognitive load. Size variability was higher in 
the 2–back condition compared the 1–back conditions, but not the 
0–back condition and size variability was higher in the 0–back than 
the 1–back condition (linear mixed effects model contrasting log 
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standard deviation of square size across 𝑁 -back conditions: 2–back 
vs 1–back: 𝛽 = 0.17, 𝑝 < .001; 2–back vs 0–back: 𝛽 = 0.07, 𝑝 = .117; 
0–back vs 1–back: 𝛽 = 0.09, 𝑝 = .047; Figure 13). 

A.4 Discussion 
The purpose of our feasibility study was to explore our ability 
to modulate cognitive load and explore its effects of different 
physiological responses and driving-related behaviors. Overall we 
successfully induced cognitive load with a 𝑁 -back task as measured 
by increases in response times and decreases in accuracy in higher 
𝑁 -back conditions (Figure 12). We also found that cognitive load 
increased tonic arousal as measured by mean changes in pupil 
diameter and similar, albeit less pronounced changes in tonic EDA 
signals (Figure 14). 

However, cognitive load had less of an influence on actual box 
task performance. Participants kept the blue square a little farther 
from the center and were slightly more variable with their steering 

wheel input as cognitive load increased. However, pedal interactions 
were less affected (Figure 13). 

Previous studies using the box task and cognitive load 
manipulations add a tertiary Detection Response Task (DRT) in 
which a participant is required to provide a response (e.g., button 
press) to an unpredictable stimulus (e.g., haptic feedback) [72]. 
These studies find that cognitive load has a more robust influence 
on metrics of the DRT (e.g., response times, accuracy) than simple 
driving metrics. These results support the cognitive control 
hypothesis [24], which predicts that cognitive load primarily 
impairs motor responses that require higher cognitive control (e.g., 
responses to unpredictable stimuli) but not responses that are more 
automatic (e.g., standard steering wheel adjustments). This would 
suggest that efforts to detect and mitigate the effects of cognitive 
load on driving should likely focus on physiological measurements 
(e.g., pupils, EDA, eye-movements) and performance on tasks 
conducted while driving that require greater cognitive control (e.g., 
touch screen interactions). 
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