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ABSTRACT 
Blind people frequently encounter inaccessible dynamic touch­
screens in their everyday lives that are difficult, frustrating, and 
often impossible to use independently. Touchscreens are often 
the only way to control everything from coffee machines and 
payment terminals, to subway ticket machines and in-flight en­
tertainment systems. Interacting with dynamic touchscreens is 
difficult non-visually because the visual user interfaces change, 
interactions often occur over multiple different screens, and it 
is easy to accidentally trigger interface actions while exploring 
the screen. To solve these problems, we introduce StateLens 
— a three-part reverse engineering solution that makes exist­
ing dynamic touchscreens accessible. First, StateLens reverse 
engineers the underlying state diagrams of existing interfaces 
using point-of-view videos found online or taken by users 
using a hybrid crowd-computer vision pipeline. Second, using 
the state diagrams, StateLens automatically generates conver­
sational agents to guide blind users through specifying the 
tasks that the interface can perform, allowing the StateLens 
iOS application to provide interactive guidance and feedback 
so that blind users can access the interface. Finally, a set of 3D­
printed accessories enable blind people to explore capacitive 
touchscreens without the risk of triggering accidental touches 
on the interface. Our technical evaluation shows that State-
Lens can accurately reconstruct interfaces from stationary, 
hand-held, and web videos; and, a user study of the complete 
system demonstrates that StateLens successfully enables blind 
users to access otherwise inaccessible dynamic touchscreens. 
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INTRODUCTION 
Inaccessible touchscreen interfaces in the world represent a 
long-standing and frustrating problem for people who are 
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Figure 1. StateLens is a system that enables blind users to interact with 
touchscreen devices in the real world by (i) reverse engineering a struc­
tured model of the underlying interface, and (ii) using the model to pro­
vide interactive conversational and audio guidance to the user about how 
to use it. A set of 3D-printed accessories enable capacitive touchscreens 
to be used non-visually by preventing accidental touches on the interface. 

blind. Imagine sitting down for a 12-hour flight only to realize 
that the entertainment center on the seatback in front of you 
can only be controlled by its inaccessible touchscreen; imagine 
checking out at the grocery store and being required to tell the 
cashier your pin number out loud because the checkout kiosk 
is an inaccessible touchscreen; and, imagine not being able 
to independently make yourself a coffee at your workplace 
because the fancy new coffee machine is controlled only by 
an inaccessible touchscreen. Such frustrating accessibility 
problems are commonplace and pervasive. 

Making touchscreen interfaces accessible has been a long-
standing challenge in accessibility [14, 17, 30], and some 
current platforms are quite accessible (e.g., iOS). Solving all 
of the challenges represented by the combination of difficult 
issues for public touchscreen devices has remained elusive: (i) 
touchscreens are inherently visual so a blind person cannot 
read what they say or identify user interface components, (ii) 
a blind person cannot touch the touchscreen to explore with­
out the risk of accidentally triggering something they did not 
intend, and, (iii) a blind person does not have the option to 
choose a different touchscreen platform that would be more 
accessible and cannot get access to the software or hardware to 
make it work better. This paper is about enabling blind people 
to use the touchscreens they encounter in-the-wild, despite 
the fact that nothing about how these systems are designed is 
intended for their use. 

Most prior work on making touchscreens accessible has as­
sumed access to change or add to the touchscreen hardware 
or software. For example, physical buttons were added to the 
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Figure 2. StateLens uses a hybrid crowd-computer vision pipeline to dynamically generate state diagrams about interface structures from point-of-view 
usage videos, and using the diagrams to provide interactive guidance and feedback to help blind users access the interfaces. 

side of the screen to provide a tactile way to provide input 
[34, 35]. Slide Rule developed multi-touch gestures that could 
control touchscreens non-visually [24], which have informed 
the popular VoiceOver screen reader on the iPhone. In the real 
world, users cannot control the touchscreens they encounter, 
and many are not accessible. In response, recent work has con­
sidered making existing interfaces accessible using computer 
vision and crowdsourcing to interpret the interfaces on-the-fly 
and provide immediate feedback to users [17]. This approach 
can work for many static interfaces, but struggles when the 
interface changes dynamically (as most touchscreens do), and 
cannot solve the problem of how a blind user could interact 
with a touchscreen without accidentally triggering touches. 

This paper introduces StateLens, a reverse engineering solution 
for making existing dynamic touchscreens accessible. State-
Lens works by reverse engineering state diagrams of existing 
interfaces from point-of-view usage videos using a hybrid 
crowd-computer vision pipeline (Figure 2). Using the state 
diagrams, StateLens automatically generates conversational 
agents that guide blind users to prespecify tasks (Figure 5). 
The StateLens iOS application then provides interactive guid­
ance and feedback to help blind users access the interfaces 
(Figure 1). StateLens is the first system to enable access to 
dynamic touchscreens in-the-wild, that addresses the very 
hard case in which blind users encounter a touchscreen that 
is inaccessible and unfamiliar, which they cannot modify the 
hardware or software, and whose screen updates dynamically 
to show new information and interface components. 

A known challenge for touchscreen interfaces is that they can­
not easily be explored non-visually without the risk of acciden­
tally triggering functions on the screen. Slide Rule developed 

the notion of “risk-free exploration” to counter this problem 
[24], but their solution (requiring multiple taps instead of just 
one) requires being able to modify how the touchscreen oper­
ates. StateLens is intended to work on touchscreens already 
installed in the world that are not possible to be modified. To 
do this, we introduce a set of simple 3D-printed accessories 
that allow users to explore without touching the screen with 
their finger, and perform a gesture to activate touch at a desired 
position. These accessories add “risk-free exploration” to ex­
isting touchscreen devices without modifying the underlying 
hardware or software. 

In a formative study, we first identified key challenges and 
design considerations for a system to provide access to dy­
namic touchscreen interfaces in the real world. Our technical 
evaluation showed that StateLens can accurately reconstruct 
interface structures from stationary, hand-held, and web usage 
videos. Furthermore, the generated state diagrams effectively 
reduced latency and prevented errors in the state detection 
process. Then through a user study with 14 blind participants, 
we showed that the conversational agent, the iOS application, 
and the 3D-printed accessories collectively helped blind users 
access otherwise inaccessible dynamic touchscreen devices 
effectively. StateLens represents an important step for solv­
ing this long-standing accessibility problem, and its technical 
approach may find applications broadly for augmenting how 
people interact with the touchscreens they encounter. 

RELATED WORK 
Our work is related to prior work on (i) reverse engineering 
user interfaces, and (ii) improving the accessibility of existing 
physical interfaces. StateLens is intended to solve a long-
standing and hard problem at the intersection of these spaces. 



Reverse Engineering User Interfaces 
A core feature of StateLens is its ability to reverse engineer 
user interfaces in-the-wild based on videos of their use. Sub­
stantial prior work exists in reverse engineering user interfaces 
using computer vision from “pixels.” This approach has been 
recognized as one of the most universally applicable meth­
ods for understanding a user interface’s components, which is 
somewhat surprising given that at some level most user inter­
faces have been created with libraries that in some way had 
knowledge of their semantics. Unfortunately, that information 
is often either lost or inaccessible once the user interface makes 
it into a running system. StateLens is intended to make user 
interfaces accessible that are on public touchscreen devices, to 
which access is purposefully restricted. 

Prior work on reverse engineering of user interfaces has mainly 
used sceenshots or screencast videos. These approaches have 
looked to automatically extract GUI components from screen-
shot images in order to decouple GUI element representation 
from predefined image templates [2, 9, 12, 22, 38], to augment 
existing interfaces through understanding of GUI components 
[2, 12], and to extract interaction flows from screencast videos 
and screen metadata [25, 28, 29, 39]. Prefab [12] identifies 
GUI elements using GUI-specific visual features, which en­
ables overlaying advanced interaction techniques on top of 
existing interfaces. Sikuli [38] uses computer vision to identify 
GUI components in screen captures for search and automation 
in the interfaces. Hurst et al. [22] combine a number of useful 
computer vision techniques with mouse information to auto­
matically identify clickable targets in the interface. Chang et 
al. [9] propose an accessibility and pixel-based framework, 
which also allow for detecting text and arbitrary word blobs 
in user interfaces. Waken [2] recognizes UI components and 
activities from screencast videos, without any prior knowledge 
of that application. 

Some of the prior work has gone beyond the task of identifying 
individual GUI components from static photos, and looked 
instead to extract interaction flows from screencast videos and 
screen metadata provided by the system API. For instance, 
FrameWire [29] automatically extracts interaction flows from 
video recordings of paper prototype user tests. Using An­
droid’s accessibility API, Sugilite [28] and Interaction Proxies 
[39] extract the screen structures, in order to create automa­
tion and improve mobile application accessibility. Kim et al. 
[25] apply a crowdsourcing workflow to extract step-by-step 
structure from existing online tutorial videos. 

StateLens builds on this rich literature, and applies a hybrid 
crowd-computer vision pipeline to automatically extract state 
diagrams about the underlying interface structures from point­
of-view usage videos. In contrast to prior work, StateLens 
is a solution for reverse engineering existing physical inter­
faces through much noisier point-of-view videos rather than 
screenshots or prototyped GUIs. 

Improving Accessibility for Physical Interfaces 
Many physical interfaces in the real world are inaccessible to 
blind people, which has led to substantial prior work on sys­
tems for making them accessible. Many specialized computer 
vision systems have been built to help blind people read the 

LCD panels on appliances [14, 30, 33]. These systems have 
tended to be fairly brittle, and have generally only targeted 
reading text and not actually using the interface. 

Crowd-powered systems robustly make visual information 
accessible to blind people. VizWiz lets blind people take a 
picture, speak a question, and get answers back from the crowd 
within approximately 30 seconds [6]. More than 10,000 users 
have asked more than 100,000 questions using VizWiz [20]. 
Users often ask questions about interfaces [8], but it can be 
difficult to map the answers received, e.g., “the stop button is 
in the middle of the bottom row of buttons”, to actually using 
the interface because doing so requires locating the referenced 
object in space (e.g., place a finger on the button). 

Other systems provide more continuous support. For example, 
Chorus:View [27] pairs a user with a group of crowd workers 
using a managed dialogue and a shared video stream. “Be 
My Eyes” matches users to a single volunteer over a video 
stream [4]. These systems could more easily assist blind users 
with using an interface, but assisting in this way is likely 
to be cumbersome and slow. RegionSpeak [40] and Touch 
Cursor [19] enable spatial exploration of the layout of objects 
in a photograph using a touchscreen. This can help users 
understand the relative positions of elements, but they still 
have the challenge of physically locating the elements in space 
on the real interface in order to use it. 

Static physical interfaces can be augmented with tactile over­
lays to make them accessible. Past research has introduced 
fabrication techniques for retrofitting and improving the acces­
sibility of physical interfaces. For example, RetroFab [31] is 
a design and fabrication environment that allows non-experts 
to retrofit physical interfaces, in order to increase usability 
and accessibility. Facade [18] is a crowdsourced fabrication 
pipeline to help blind people independently make physical 
interfaces accessible by adding a 3D-printed augmentation of 
tactile buttons overlaying the original panel. 

VizLens [17] is a screen reader to help blind people use inac­
cessible static interfaces in the real world (e.g., the buttons on 
a microwave). Our work goes beyond VizLens by enabling 
access to dynamic touchscreens. Without the 3D-printed ac­
cessories introduced in this paper, VizLens would not work for 
touchscreens. VizLens users would also need to take pictures 
when the screen changes, which is difficult. With VizLens, 
at each step, a good picture must be taken, labeled, and only 
afterwards can users explore the buttons on the single screen. 
Each screen iteration would take several minutes, making it 
cumbersome to use for dynamic interfaces. 

VizLens::State Detection is able to do limited adaptation to 
dynamic interfaces by matching against every possible state 
and providing feedback based on the best match. However, 
because of changing display states and screen layouts, explor­
ing and activating UI components across multiple screens is 
difficult (analogous to finding one’s way in a new city). By 
generating and using state diagrams, StateLens enables a cru­
cial interaction of previewing and prespecifying tasks through 
a conversational agent (analogous to using map applications to 
plan trips and follow turn-by-turn directions). The 3D-printed 



accessories make exploration possible by bringing risk-free 
exploration to touchscreens. 

FORMATIVE STUDY 
We conducted a formative study to identify the key challenges 
and design considerations for a system to provide access to dy­
namic touchscreen interfaces in the real world. We conducted 
semi-structured interviews with 16 blind people about their ex­
periences and challenges with public touchscreen appliances, 
and their strategies for overcoming these challenges. Then us­
ing a Wizard-of-Oz approach, we asked two participants to try 
using a touchscreen coffee machine with verbal instructions 
given by the researchers. We extracted key insights that re­
flected participants’ challenges and strategies, which we used 
in the design of StateLens. 

Design Considerations 
Participants remarked that interfaces are becoming much less 
accessible as flat touch pads and touchscreens replace physical 
buttons. Touchscreen appliances mentioned by participants 
were very diverse, and their interfaces differed in size, type of 
functions and number of buttons. 

Supporting Independence 
Participants often resorted to sighted help when accessing pub­
lic touchscreen appliances, and raised serious privacy concerns 
when asking others (often strangers) to help with entering sen­
sitive information, e.g., using credit card machines to complete 
financial transactions, or using sign-in kiosks at pharmacies 
and doctors’ offices. Participants also mentioned sighted peo­
ple giving incorrect or incomplete information because of 
a lack of patience or experience helping blind people. Our 
solution should enable blind people to independently access 
touchscreen devices without needing sighted assistance. 

Reducing Cognitive Effort 
For unfamiliar dynamic touchscreen devices, the amount of 
time and cognitive effort needed for blind people to explore, 
understand, and activate functions became quite heavy. Partic­
ipants noted that if it were for a one-time use, it would not be 
worthwhile to invest the time and effort to learn the interface, 
which is much easier for sighted people. Our solution should 
support more fluid interactions to reduce blind users’ cognitive 
effort in exploring the interface layout and accessing functions 
on complex and unfamiliar touchscreen devices. 

Enabling Risk-Free Exploration 
Participants shared their concerns and fears of accidentally 
triggering functions on inaccessible touchscreens. For exam­
ple, a participant mentioned that once in a few weeks she 
would accidentally hit the settings button on her fridge’s touch­
screen panel, then she needed to call someone to come and 
check on it, which has been a huge burden. 

When attempting to use existing inaccessible touchscreen de­
vices, participants found holding their fingers in mid-air while 
trying to explore and locate the buttons to be very awkward 
and unusable, which also often resulted in accidental touches. 
Therefore, our solution should support “risk-free exploration” 
to enable blind users freely explore without accidentally trig­
gering functions on the screen. 

RISK-FREE EXPLORATION 
Risk-free exploration allows blind users to freely explore with­
out accidentally triggering functions on the screen, all without 
modifying the underlying hardware or software of the device. 

Thingiverse Survey 
We first conducted an exploratory search on Thingiverse to 
understand what openly available solutions exist for people to 
interact with touchscreens and see if they can enable risk-free 
exploration for blind people. We created a list of 11 search 
terms including: touchscreen accessibility; touchscreen stylus; 
screen stylus; capacitive screen input; resistive screen; input 
assistive; assistive finger cap; finger cap; 3D printed acces­
sibility; conductive PLA accessibility; and prosthetic finger. 
These search terms resulted in a total of 103 existing designs. 
We then filtered results that were not related to accessibility 
or assistive technology (e.g., raspberry pi and/or touchscreen 
cases), leading to a total of 39 relevant items. 

Using an approach akin to affinity diagramming [5, 10, 21], 
we classified these items into five main categories of devices: 
styluses, prosthetic accessories, finger caps, buttons and joy­
sticks. We show each of these categories with example items 
in Table 1. Although the Thingiverse designs are closely re­
lated to assistive usage for touchscreens, none of them satisfy 
our need to enable blind users risk-free access to an existing 
touchscreen device. We used these categories to inspire design 
ideas for prototypes that take on familiar forms used in the 
Thingiverse accessibility community but also support risk-free 
exploration (Figure 3). 

Finger Ring Prototype 
Inspired by the finger cap designs from Thingiverse, we first 
created a 3D-printed ring that allows users to explore without 
touching the screen, and tilt their finger forward to perform a 
touch at a desired position (Figure 3A-C). 

We tested this design in a pilot study with two blind partic­
ipants (one female, age 48; one male, age 57). While the 
3D-printed finger ring enabled our participants to explore 
without accidental triggers, participants also identified issues 
related with the design and suggested other solutions. For 
example, the location of the ring on the finger may vary for 
different users and different sessions during use, thus changing 
the actual position of touch. Furthermore, when pressing the 
finger and finger ring on the touchscreen, it was uncomfortable 
for the participants for certain angles and postures. This is 
worsened when they are asked to only use one finger to interact 
with the interfaces, in order to prevent accidental touches. 

Design Variations 
Informed by the participants’ feedback to our initial prototype, 
we designed variations of 3D-printed accessories (Figure 3DG) 
that focus on improving stability and comfort during use. The 
designs aim to reduce the change of “touchpoint” when the 
user moves from exploration to interaction (i.e., touch acti­
vation), and maintain consistency across sessions. We also 
focused on capacitive touchscreens rather than resistive touch­
screens, since resistive screens usually require some pressure 
to activate so the issue of accidental activation is not as severe 
compared to capacitive touchscreens. 



Category Example Thingiverse Items 

Styluses (17) iPad drawing pencils (thing:8976); capacitive stylus (thing:2870398, thing:225001); resis­
tive stylus (thing:1582974, thing:577056); mouth sticks (thing:1321021); wrist-cuff stylus 
(thing:1315004); Nintendo 3DS Stylus (thing:798010) 

Prosthetic Accessories (10) prosthetic hands (thing:1717809, thing:380665, thing:242639); prosthetic finger 
(thing:2527421, thing:2840850) 

Finger Caps (6) thimbles around or over the fingertip (thing:612664, thing:1044791); thumb protectors 
(thing:28722); adapter to hold another object on finger (thing:2133318) 

Buttons (4) button grid for mouse input (thing:2745606); mechanical triggers for mobile phone games 
(thing:2960274); assistive button via phone’s microphone input jack (thing:1471760); 
braille button input for phone (thing:1049237) 

Joysticks (2) touchscreen mounted capacitive joystick (thing:2361676, thing:2361676) 

Table 1. Categorization of our Thingiverse survey results related to assistive technologies, touchscreens, and finger-based interactions. The number of 
items is shown next to each category name. 

Our design variations consist of a finger cap (Figure 3D) and 
a conductive stylus (Figure 3G). The finger cap prevents ac­
cidental touches by shielding undesirable areas of the finger 
from touching the touchscreen. The cap has an opening on 
the finger pad that allows the user to tilt their finger to ac­
tivate a touch (Figure 3DEF). Compared to the ring design, 
the finger cap’s enlarged shielding area and top cover prevent 
accidental touches more effectively and ensure consistency 
across sessions. This finger-worn design also incorporates 
a slit so that when 3D printed with a flexible material (e.g., 
thermoplastic polyurethane – TPU), it can fit around fingers 
of different sizes. The stylus uses a conductive trace to trig­
ger touches at the tip of the stylus when touched by a finger 
(Figure 3GHI). It provides a physical affordance to prevent 
accidental touches, by delineating the conductive and non­
conductive regions with a rectangular bumper located on the 
side of the stylus. Conductive traces can be applied using 
conductive paint or printed with conductive PLA on a dual 

Figure 3. A set of 3D-printed accessories that prevent the wearer from 
accidentally triggering touches while exploring the interface. When de­
sired, the wearer can activate a touch using either a tilt motion (B-C 
and E-F) or by touching a conductive trace on the accessory with a fin­
ger (H-I). These accessories elegantly add “risk-free exploration” to ex­
isting capacitive touchscreen devices without modifying the underlying 
hardware or software, which has been a major hurdle for past efforts. 
3D models of these accessories are available at: https://github.com/ 
mriveralee/statelens-3dprints 

extrusion 3D printer. We had success with both techniques, 
though conductive PLA was more durable, while conductive 
paint can come off after repeated use. 

STATELENS 
StateLens uses a hybrid crowd-computer vision pipeline to 
dynamically generate state diagrams about interface structures 
from point-of-view usage videos, and to provide interactive 
feedback and guidance to help blind users access the interfaces 
through these diagrams. We use the coffee machine in Figure 4 
as a running example. 

Generating the State Diagram 
The architecture of StateLens to generate state diagrams (Fig­
ure 2) involves capturing point-of-view usage videos from 
a variety of sources, representing state diagrams, detecting 
screen regions, identifying existing and new states, soliciting 
labels from the crowd, as well as recognizing user interactions. 

Capturing Point-of-View Usage Video 
StateLens takes point-of-view usage videos of dynamic inter­
faces from various sources as input to build up state diagrams 
about interface structures. These videos can be collected in 
many ways, including through existing IoT and surveillance 
cameras, through motivating sighted volunteers to contribute 
videos using mobile and wearable cameras, by encouraging 
manufacturers to share videos as a low-cost way to make their 
systems accessible to more people, and by mining existing 
demo and tutorial videos in online repositories. For example, 
a search on YouTube for “coca cola freestyle machine demo” 
produces many usage videos. In the current work, we demon­
strate StateLens with videos captured from stationary cameras, 
hand-held mobile phones and web video repositories. 

Representing State Diagram 
StateLens represents the interface structure with a state 
diagram, as shown in Figure 2 and the instantiation of 
the coffee machine shown in Figure 4. We represent 
a state diagram as a directed graph G = (V, E, S,T ) 
where S is the start state and T = {T1, T2, ..., Tn} con­
tains the end states where tasks are accomplished. 
Each node (state) Vi ∈ V can be represented as Vi = 
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Figure 4. Visualization of how StateLens represents the coffee machine interface structure as a state diagram. Note only some edges are shown. 

({b1,b2, ..., bn},descriptions, coordinates, other metadata), 
where bn is one of the interactive elements (e.g., but­
tons) in state Vi. Each edge (transition) from state 
Vi to state Vj is Ei j ∈ E that can be represented as 
Ei j = ({b1,b2, ..., bm},Vi,Vj). Note that here bm represents 
the button identifier in the metadata of “from state” that 
caused the state transition into “to state.” Following our 
running example, the transition from the initial state S = V0 = 
({bcoffee_drinks ,bgourmet_drinks,bhot_beverages },other metadata) 
to the coffee drink type state V1 can be represented as: 
E01 = V0 → V1 = ({bcoffee_drinks },V0,V1), stating that by 
interacting with button “Coffee Drinks” in the initial state, we 
could get to the desired state for coffee drinks type selection. 
Similarly, the transition to go back to the initial state can be 
represented as: E10 = V1 → V0 = ({bback},V1,V0). 

Detecting the Screen 
StateLens detects whether a screen is present and its bound­
ing box in the camera’s field of view to filter out irrelevant 
video frames and random background content. Since there is 
no existing models for detecting touchscreen interfaces, we 
re-purpose state-of-the-art object detection models’ output for 
this task. Using the Amazon Rekognition Object Detection 
API [1], StateLens first detects bounding boxes of object cate­
gories related to electronics and machines. If such bounding 
boxes exist and their sizes are above 10% of the image size 
(aiming to filter out objects that are not the one of interest), 
StateLens crops the image using the bounding box to remove 
background noises for further processing. If not, StateLens 
checks whether the output labels with high confidence scores 
(above 55%) appears in the above categories. If so, the full 
video frame is retained and used for further processing. If not, 
the frame is determined irrelevant and discarded. StateLens 
is quite lenient in this step to prevent accidentally removing 
relevant frames, in order to maintain a high recall. 

Identifying Existing States 
StateLens extracts two kinds of features and intelligently com­
bines them (Figure 2): SURF (Speeded-Up Robust Features) 
[3] and OCR. StateLens first uses SURF feature detectors to 
compute key points and feature vectors in both the existing 
state reference images (Figure 4) and the input image. The fea­
ture vectors are then matched using brute-force matcher with 
normalization type of L2 norms, which is the preferable choice 

for SURF descriptors. By filtering matches and finding the 
perspective transformation [11] between the reference-input 
image pairs using RANSAC (Random Sample Consensus) 
[13], StateLens is able to compute the ratios of inliers to the 
number of good matches for each existing state. It then uses 
the reference state with the distinctly highest ratio as the can­
didate matched state. 

If the highest matched ratio across existing reference images 
is not high enough, meaning the match using only SURF 
features is not so confident, StateLens then uses the Google 
Cloud Vision API [16] to compute OCR results for the input 
image and compares to the pre-computed OCR results of the 
state reference image. Similarity is defined as the ratio of 
longest common sequence (LCS) edit distance to the length of 
the OCR output results, and if above a threshold, the candidate 
matched state is finalized as the matched state. For example, 
matching V1 against V5 results in low confidence with SURF, 
then with additional information provided by OCR, StateLens 
is able to differentiate them. On the other hand, if both the 
matched inlier ratio and the OCR similarity score are below a 
certain threshold, StateLens determines it as not a match. 

Adding New States 
When a transition happens on the dynamic interface, the new 
state might not have been seen before. If an input image is 
not a match with the existing states, StateLens adds it to a can­
didate pool. Then, for the next images which are also added 
into this pool, they are matched against the existing candidates. 
Using this candidate pool approach, only when the same im­
age is seen continuously across multiple frames, StateLens is 
confident enough to register it as a new state. Among the can­
didates identified as the same state, StateLens automatically 
selects the last one added to the pool as the reference image 
for this new state. We do so because the first few candidates 
often include transition residuals from the previous state, such 
as animations. We use a time window of 1 second for this 
process. On the other hand, if continuous unmatched states 
in the pool do not reach the window size to qualify as a new 
state, they are considered noise and the candidate pool will be 
cleared. Once a new state is registered, StateLens then sends 
it to the crowdsourced labeling pipeline to acquire more infor­
mation such as the interface region, interaction components, 
and description (Figure 2). 



Soliciting Labels from the Crowd 
StateLens builds upon the crowdsourcing workflow in VizLens 
[17], and uses a two-step workflow to label the area of the 
image that contains the interface assisted with screen detection 
results, and then label the individual interaction components 
assisted with OCR output (Figure 2). Crowd workers are 
first asked to rate the image quality, segment the interface 
region (with the generated screen bounding box as a start when 
available), indicate the approximate number of interaction 
components, and additionally provide a description of the 
interface state. Results are combined using majority vote. 

Crowd workers are then instructed to provide labels to the 
individual interaction components (e.g., buttons) assisted with 
OCR output. Rather than requiring crowd workers to draw 
bounding boxes around all buttons and provide text annota­
tions, the OCR-assisted crowd interface allows them to simply 
confirm or reject OCR-generated labels, and revise any er­
rors. In this step, crowd workers also work in parallel, and the 
worker interface shows labeled elements to other workers as 
they are completed. 

Recognizing User Interaction 
Finally, StateLens captures the interaction component that 
triggered a state transition, e.g., a button bn that contributes 
to the transition Ei j = Vi → Vj = ({bn},Vi,Vj). Essentially, 
StateLens uses the last image of the previous state Vi before 
the state transition, transforms the input image to the reference 
image frame through warping, and detects the touchpoint lo­
cation using skin color thresholding and other standard image 
processing techniques [36]. 

In the next section of Accessing the State Diagram, using the 
user interaction information, StateLens predicts the state that 
the interface could be transitioning to, and reduces the process­
ing latency and errors by narrowing down the search space. 
Furthermore, StateLens aggregates these interaction traces to 
provide ranked usage suggestions to assist novice users. Note 
that recognizing finger touchpoint locations in naturalistic us­
age videos is not always possible or accurate, such as under 
extreme lighting conditions, or when users are wearing gloves. 
In those cases, StateLens will fallback to only using the state 
transition without the detailed interaction component as the 
triggering event, e.g., Ei j = Vi → Vj = ( 0/ ,Vi,Vj). 

Accessing the State Diagram 
To help blind users access the dynamic interfaces, StateLens 
takes advantage of the state diagram to efficiently identify 
states, integrates natural language agents, and interactively 
provides feedback and guidance (Figure 1). 

Identifying States Efficiently and Robustly 
StateLens employs several techniques to enable efficient 
searching of states to reduce latency and prevent errors. First, 
when available, StateLens utilizes user’s fingertip location to 
infer from the state diagram about the state that the interface 
has transitioned to, e.g., using the button that the finger was on. 
Second, StateLens searches the neighbors of previously iden­
tified state for the best match, in case when the inferred state 
from the fingertip location matches poorly with input image. 
Third, in case the matching results with neighbor states are 

poor, StateLens gradually expands the search space to other 
states of the interface according to the distance, calculated 
as the shortest path in the state diagram. Fourth, StateLens 
applies a similar approach to the candidate pool for smoothing, 
and only when a new state has been seen continuously across 
multiple frames, it is confident enough to determine a state 
transition. Finally, the reference images can be pre-computed 
once in advance to improve processing speed. These tech­
niques effectively reduces the search space, speeds up the 
state detection process, and improves the robustness of state 
detection, which we will validate in technical evaluation. Note 
that for performance reasons, only SURF features are used 
when detecting states to provide real-time feedback for blind 
users. This is because the screen detection and OCR processes 
have longer delays (~1 second). However, in the future, these 
processes can be sped up and the produced bounding boxes 
can be tracked across frames to offer better performance. 

Enabling Natural Language Queries 
StateLens allows users to interact with a natural language con­
versational agent to prespecify the task they want to achieve. 
Inspired by our formative study, the goal of the conversational 
agent is to reduce the time and effort of the blind users to 
explore, understand, and activate functions on inaccessible 
and unfamiliar touchscreen interfaces. To do this, StateLens 
transforms all the possible paths (interaction traces) from S 
to T in the generated state diagram into different intents (e.g., 
to make coffee drinks, to make gourmet drinks), and the in­
teractive element values in the edges Ei along the path into 
required entities for the intent and their attributes/values (e.g., 
size: large/medium/small). Using the Google Dialogflow API 
[15], StateLens automatically creates an agent for each device 
using these mappings. StateLens uses the description text from 
state S as the welcome prompt and adds confirmation prompts 
at the end of intents. StateLens heuristically generates training 
samples for the intents and prompts to the required entities 
from the descriptive texts along different paths aforementioned. 
Because Dialogflow only requires a small number of user ut­
terance samples for training, StateLens uses a random sample 
of entity values and concatenates with phrases such as “Select 
...” to create training sentences. The created agent then guides 

Welcome message from the 
initial state

Summary by aggregation

Parse required parameters:
size = large
coffee_type = coffee 50-50

Prompt missing parameter: 
strength = ?

Ask for confirmation

Conversation Agent Example - Coffee Machine

Select what would you like to drink from coffee 
drinks, hot beverages, and gourmet drinks.

Can I get a summary?

You can say: “I want large cappuccino”.

I want a large coffee 50-50.

Select strength from mild, regular and strong.

Strong.

You want large strong coffee 50-50, is that 
right?

Yes.

Gotcha. I will help you out! Proceed to guidance

1

2

3

4

5

6

Figure 5. Sample interactions between a user and the coffee machine nat­
ural language conversational agent StateLens automatically generated. 



Figure 6. We evaluated how well StateLens reconstructs state diagrams from point-of-view usage videos across a wide range of interfaces, including 
an ATM, coffee machine (both graphical and text only), printer, projector control, room reservation panel, treadmill, ticket kiosk, Coca-Cola machine, 
subway ticket machine, washer, and car infotainment system. 

the user through each required parameter needed to complete 
an interaction trace. Once all required entities are fulfilled, the 
StateLens iOS application will proceed to guiding the users 
to activate each button on the predefined interaction trace. A 
sample user-agent interaction is shown in Figure 5. 

Generating Natural Language Summary 
StateLens uses the state diagram and the associated aggrega­
tion of interaction traces to automatically generate a natural 
language summary of the devices’ popular use cases. This is 
designed to assist novice users get familiar with the device. To 
do this, StateLens ranks the aggregated interaction traces, then 
generates prompts for each trace based on the involved state 
and transition metadata as well as the corresponding interac­
tion components. StateLens uses simple heuristic template-
based generation methods that concatenate words like “I want 
...” with most frequently selected button options, i.e. entities, 
as well as the descriptive text of the intent. This natural lan­
guage summary is also integrated in the conversational agent 
(Figure 5), and users can simply ask, e.g., “tell me a summary.” 

Providing Interactive Feedback and Guidance 
StateLens identifies the current state of the dynamic interface, 
and recognizes the user’s touchpoint location to provide real-
time feedback and guidance for blind users through the iOS 
application. For blind users accessing the interface with a 
3D-printed accessory, a color marker on the accessory can be 
used to identify the touchpoint location. To make sure the 
touchpoint does not change from exploration to activation (i.e., 
the problems Slide Rule [24] addressed with split tap, and 
VizLens [17] addressed with shifting the interaction point), we 
measured the ground truth touchpoint location and placed the 
color marker on the accessory accordingly. 

StateLens then looks up the coordinates of the touchpoint in 
the current state’s labeled interaction components, and an­
nounces feedback and guidance to the blind user, e.g., “state: 
coffee drinks, select strength; target: regular”, “move up”, 
“move left slowly” and “at regular, press it.” StateLens also 
provides feedback to users when the interface is partially out 
of frame by detecting whether the corners of the interface are 
inside the camera frame. If not, it provides feedback such as 
“move phone to right.” Similarly, it provides feedback when 
it does not detect the interface or does not see a finger (using 
words or earcons [7] for “no object” or “no finger”). 

TECHNICAL EVALUATION 
We conducted a multi-part technical evaluation in order to 
understand how each key component of StateLens performs 
across a wide range of interfaces and usage scenarios. 

Dataset 
We collected a total of 28 videos from a diverse set of eight dy­
namic touchscreen interfaces, in different lighting conditions, 
and with both stationary and hand-held cameras, resulting in a 
total of 40,140 video frames. We also manually selected web 
videos of four touchscreen interfaces, resulting in a total of 
32,610 video frames. All of these videos for our evaluation 
were collected by sighted people. The list of interfaces is 
shown in Figure 6, and summarized in Table 2. 

Generating the State Diagram 
We first evaluated the effectiveness of StateLens in reconstruct­
ing interface structures from stationary, hand-held, and web 
usage videos. After StateLens generated the states, researchers 
manually coded them as correct, missing, or redundant in order 
to calculate precision and recall. A high precision indicates 
that most of the extracted states are unique screens of the actual 
interface (few duplicates). A high recall indicates that most of 
the screens of the interface are captured in the extracted states 
(good coverage). 

For each interface and video source, we computed the preci­
sion, recall, and F1 scores for the extracted states using four 
configurations of features: (i) SURF features only, (ii) Screen 
Detection and SURF features, (iii) SURF and OCR features, 
and (iv) Screen Detection, SURF, and OCR features. The re­
sults are shown in Table 2. Overall, the combination of Screen 
Detection+SURF+OCR features achieved high performances 
across a wide range of interfaces, and were often the best in 
the four feature configurations. 

Regarding the effect of our screen detection approach, a com­
bination of Screen Detection+SURF+OCR features generally 
yielded higher performance compared to SURF+OCR fea­
tures. The advantages were mostly observed in the precision 
differences and especially for web videos, as irrelevant frames 
and noisy background were filtered out. The screen detection 
technique did not work well for the Coca-Cola machine, as 
the object detection model would not classify it as electronics 



Coffee Machine (G) Coffee Machine (T) ATM Printer Projector Control 
Stationary Hand-held Stationary Hand-held Stationary Hand-held Stationary Hand-held Stationary Hand-held 

# of states 14 13 11 10 11 12 10 10 13 9 

# of frames 4,980 2,580 3,060 2,310 2,910 2,340 1,380 1,980 3,540 1,530 

SURF 
0.47 0.57 0.67 0.62 0.88 0.64 0.78 0.70 0.85 1.00 0.52 1.00 1.00 0.10 0.82 0.90 1.00 0.46 0.50 0.56 

0.52 0.64 0.74 0.74 0.92 0.69 0.18 0.86 0.63 0.53 

SD 
+SURF 

0.58 0.50 0.73 0.62 1.00 0.64 0.80 0.80 0.69 1.00 0.63 1.00 1.00 0.20 0.82 0.90 0.86 0.46 0.63 0.56 
0.54 0.67 0.78 0.80 0.81 0.77 0.33 0.86 0.60 0.59 

SURF 
+OCR 

0.72 0.93 0.65 0.85 0.73 1.00 0.67 1.00 1.00 1.00 0.75 1.00 1.00 0.40 0.63 1.00 1.00 0.54 0.67 0.67 
0.81 0.73 0.85 0.80 1.00 0.86 0.57 0.77 0.70 0.67 

SD+SURF 
+OCR 

1.00 0.93 0.85 0.85 0.91 0.91 0.77 1.00 1.00 1.00 0.75 1.00 0.86 0.60 0.63 1.00 1.00 0.62 0.70 0.78 
0.96 0.85 0.91 0.87 1.00 0.86 0.71 0.77 0.76 0.74 

Room Reservation Treadmill Ticket Kiosk Coca-Cola Subway Washer Car Control 
Stationary Hand-held Stationary Hand-held Stationary Hand-held Web Web Web Web 

# of states 7 8 10 10 11 14 9 16 11 24 

# of frames 1,560 1,260 1,260 4,500 1,470 3,480 2,100 6,630 5,940 17,940 

SURF 
0.83 0.71 0.33 1.00 1.00 0.10 1.00 0.80 0.47 0.73 0.53 0.57 0.23 1.00 0.48 0.94 0.46 0.55 0.79 0.46 

0.77 0.50 0.18 0.89 0.57 0.55 0.37 0.64 0.50 0.58 

SD 
+SURF 

0.86 0.86 0.50 0.75 1.00 0.10 1.00 0.50 0.58 0.64 0.64 0.50 0.33 0.67 0.71 0.94 0.78 0.64 0.73 0.67 
0.86 0.60 0.18 0.67 0.61 0.56 0.44 0.81 0.70 0.70 

SURF 
+OCR 

0.54 1.00 0.39 0.88 0.75 0.60 0.83 0.50 0.50 0.73 0.60 0.64 0.20 0.89 0.47 1.00 0.53 0.82 0.65 0.83 
0.70 0.54 0.67 0.63 0.59 0.62 0.33 0.64 0.64 0.73 

SD+SURF 
+OCR 

0.78 1.00 0.47 1.00 0.58 0.70 0.83 0.50 0.50 0.73 0.65 0.79 0.40 0.67 0.65 0.94 0.75 0.82 0.73 0.92 
0.88 0.64 0.64 0.63 0.59 0.71 0.50 0.77 0.78 0.81 

Table 2. Aggregated precision, recall, and F1 scores of the state diagram generation process of StateLens using a combination of features – Screen 
Detection (SD), SURF, and OCR – and with stationary, hand-held, and web (with links) usage videos. Each cell shows the precision (top left), recall (top 
right), and F1 scores (bottom). Bold values identify the feature combination with the best performance. 

or machines. To address this problem, special-purpose models 
for detecting screens could be built. 

Regarding OCR features, a combination of Screen Detec­
tion+SURF+OCR features generally had better performance 
compared to Screen Detection+SURF features. The advan­
tages were mostly observed in the recall differences, and 
specifically for interfaces that had many similar screens in 
graphical layout with only text changes, e.g., coffee machine 
(graphical), coffee machine (text-only), projector control, and 
room reservation interfaces. Regarding the different video 
sources, stationary videos generally performed better com­
pared to hand-held ones for the same interface, because state 
matching is more robust with less camera blur, changing back­
ground noise and other uncertainty from camera motion. 

Parameters can be chosen to further maximize recall (sacri­
ficing some precision), as post-hoc crowd validation can be 
applied in the future to further filter out duplicates. Duplicate 
states require more manual effort to clean up, but have less 
impact on user experience compared to missing states. 

Accessing the State Diagram 
We next evaluated the effectiveness of using state diagrams to 
reduce latency and prevent errors in the state detection process. 

Using State Diagram to Reduce Search Time 
We evaluated the efficiency of our techniques in identifying 
states compared to the naive approach in VizLens::State De­
tection [17] which compares against every possible reference 
image. We varied the total number of states involved from one 
to all 14, and plotted the amount of processing time required 
for identifying the current state. The results show that as the 

number of states increases, StateLens achieved a relatively 
stable processing time compared to the linear increase in the 
baseline approach (Figure 7). Furthermore, using the coffee 
machine with all 14 states, StateLens can still maintain suf­
ficient speed for audio-guided interaction (~5fps), while the 
baseline approach dropped to ~2fps and became unusable. 

Using State Diagram to Reduce Search Error 
We then evaluated the robustness of our techniques in identify­
ing states compared to the baseline approach. We varied the 
total number of states involved from one to all 14, and plotted 
the percentage of errors in identifying the current state. The 
results show that as the number of states increases, StateLens 
achieved a relatively stable error rate of ~5% compared to the 
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Figure 7. StateLens maintains a relatively stable processing time for 
state detection as the number of states increases, compared to the linear 
increase in the baseline approach. 

https://youtu.be/Dm2VQHJih8Y
https://youtu.be/DcP5W9K-1E8
https://youtu.be/RLwrfBAMNAA
https://youtu.be/Qr2bvXZRqyc
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Figure 8. StateLens maintains a relatively stable error rate for state 
detection as the number of states increases, compared to the increasing 
trend in the baseline approach. 

increasing trend in the baseline approach (Figure 8). Next in 
user evaluation, we further demonstrate how the generated 
state diagrams power interactive applications to assist blind 
users access existing dynamic touchscreen devices. 

USER EVALUATION 
The goal of our user study was to evaluate how the components 
of StateLens (the 3D-printed accessories, the conversational 
agent, and the iOS application) perform in enabling blind 
people to accomplish realistic tasks that involve otherwise 
inaccessible dynamic touchscreen interfaces. 

Apparatus and Participants 
In order to enable repeated testing without wasting coffee, we 
built a simulated interactive prototype of the coffee machine 
in Figure 4 with InVision [23], which we displayed on an 
iPad tablet of similar size as the coffee machine’s interface 
(iPad Pro 3rd generation, 11-inch, running iOS 12.2 without 
VoiceOver enabled). The conversational agent and the iOS 
application were installed on an iPhone 6, running iOS 12.2 
with VoiceOver enabled. The finger cap and the conductive 
stylus in Figure 3 were fabricated and used. We recruited 14 
visually impaired users (9 female, 5 male, age 34-85). The 
demographics of our participants are shown in Table 3. 

Procedure 
Following a brief introduction of the study and demographic 
questions, participants first completed tasks using the 3D­
printed accessories. For each of the three screen placements (in 
the order of 90° vertical at chest-level, 45° tilted at chest-level, 
and 0° flat on the table), participants completed five trials using 
both the finger cap and the conductive stylus. The order of 
accessories was counterbalanced for all participants. For each 
trial, participants were first instructed to explore by placing 
the accessory on the touchscreen and move according to the 
researcher’s verbal instructions without activating touches. 
Participants were then asked to activate a touch. The number 
of accidental triggers during exploration, and the number of 
attempts during activation were recorded. 

Next, participants were asked to talk to the conversational 
agent to prespecify drinks they want to order from the coffee 
machine for three times. Participants were instructed to order 

from a general category (e.g., coffee drinks), but can freely 
choose the other properties (e.g., coffee type, strength, size). 
Task completion rate and time were recorded. 

Next, according to the three interaction traces prespecified 
through the conversational agent, participants were asked to 
use the 3D-printed accessories to perform the tasks following 
the guidance and feedback of the iOS application. These realis­
tic tasks involved a series of button pushes across many states, 
e.g., select gourmet drinks, cafe latte, strong strength, then 
confirm, auto-select default coffee bean, and end on the drink 
preparation screen. The iPad Pro simulating the inaccessible 
coffee machine was placed tilted at chest level, and the iPhone 
6 running the iOS application was mounted on a head strap to 
simulate a head-mounted camera. Task completion rate and 
time were recorded. 

After each step of the study, we collected Likert scale ratings 
and subjective feedback from the participants. Finally, we 
ended the study with a semi-structured interview asking for 
the participant’s comments and suggestions on the StateLens 
system. The study took about two hours and participants were 
each compensated for $50. The whole study was video and 
audio recorded for further analysis. 

Results 
We now detail our user study results and summarize user 
feedback and preferences. For all Likert scale questions, par­
ticipants rated along a scale of 1 to 7, where 1 was extremely 
negative and 7 was extremely positive. 

Exploration and Activation with 3D-Printed Accessories 
All participants except P12 completed tasks using the 3D­
printed accessories. P12 had low vision, and was able to 
hover his finger above the target and then activate by him­
self. The aggregated results are shown in Table 4. Using 
the conductive stylus to explore touchscreens generally re­
sulted in fewer accidental triggers (M = 0.03, SD = 0.16) 
compared to using the finger cap (M = 0.07,SD = 0.27). 
On the other hand, the average attempts of using the stylus 
(M = 2.48,SD = 1.07) was more than that from using the 
finger cap (M = 1.90,SD = 1.01). This is likely because the 
conductive material is less sensitive compared to fingers. 

In general, participants found both accessories to be com­
fortable to use (M = 5.9,SD = 1.1) and highly useful (M = 
6.4,SD = 0.8). However, there were differences across the 
various screen placements. Participants slightly preferred us­
ing the stylus to explore and activate touchscreens in the 90° 
screen placement (54% vs. 46%), since holding the hand in the 
upright position using the finger cap was not as comfortable 
(M = 5.3,SD = 1.4), and the stylus felt more natural. Others 
preferred the finger cap since it provided better control over 
the stylus. On the other hand, participants preferred the fin­
ger cap much more than the stylus (65% vs. 35%) in the 45° 
and 0° screen placements, since the finger cap became more 
comfortable to use in these positions (M = 6.3,SD = 0.8). 

We observed that participants sometimes held the accessories 
in awkward postures, likely due to unfamiliarity. This can 
be improved with practice, as participants generally found 
the accessories to be very easy to learn (M = 6.2,SD = 0.9). 



ID Gender Age Occupation Vision Level Hearing Smartphone Use 
P1 Female 64 Retired Light perception, since 10 years old Normal iPhone, 9 years 
P2 Female 77 Retired Light perception Normal iPhone, 2 years 
P3 Female 34 Unemployed Blind, since birth Normal iPhone, 6.5 years 
P4 Female 46 AT consultant Blind, since birth Normal iPhone, 5 years 
P5 Male 43 IT consultant Light/motion perception Slight loss iPhone, 3.5 years 
P6 Male 67 Business Rep. Blind, since birth Normal iPhone, 5.5 years 
P7 Female 64 Retired Blind, since birth Mild loss iPhone, 7.5 years 
P8 Male 85 Retired Blind, since 8 years old Normal No 
P9 Female 37 AT Director Light/shape perception Normal iPhone, 6 years 
P10 Female 73 Retired Blind, since birth Normal iPhone, 2 years 
P11 Female 71 Retired Blind, since childhood Slight loss iPhone, 7.5 years 
P12 Male 71 Retired Low vision (20/200), color blind, since birth Normal iPhone, 9 years 
P13 Female 51 Unemployed Blind, since birth Moderate loss iPhone, 8 years 
P14 Male 71 Retired Light perception Slight loss iPhone, 4 years 

Table 3. Participant demographics for our user evaluation with 14 visually impaired users. Thirteen were blind, and one (P12) had low vision. 

Better affordances could further improve learnability as one 
participant (P14) noted that a conductive stylus design which 
incorporates a physical button to trigger, instead of a conduc­
tive region, would be beneficial. 

Another interesting observation was that 8 of 13 participants 
who completed the tasks for the printed accessories would 
occasionally perform a “double-click”, or two taps in quick 
succession to activate the screen. Almost all of this subset of 
participants (7) had a strong familiarity with using VoiceOver 
on an iPhone or iPad, suggesting their habitual use of this tech­
nology may influence their interactions using the accessories. 

Prespecifying Tasks with the Conversational Agent 
Participants spent an average of 53.7 seconds (SD = 11.6) 
to prespecify tasks with the conversational agent, with an 
overall task completion rate of 100%, and found it to be ex­
tremely easy to learn (M = 6.6,SD = 0.6), comfortable to use 
(M = 6.8,SD = 0.4), and useful (M = 6.7, SD = 0.6). Several 
participants tried specifying multiple parameters in one sen-

Screen Placement 90 degrees 45 degrees 0 degree 

Stylus 

Triggers 0 (0) 0.05 (0.21) 0.03 (0.17) 
Attempts 
Learnability 

2.63 (1.13) 
6.0 (0.9) 

2.52 (1.08) 
6.3 (0.9) 

2.29 (0.99) 
6.3 (0.9) 

Comfort 5.8 (1.4) 6.0 (1.1) 6.1 (0.9) 
Usefulness 6.0 (1.2) 6.3 (0.6) 6.5 (0.7) 
Satisfaction 5.8 (1.3) 6.5 (0.5) 6.7 (0.5) 

Cap 

Triggers 
Attempts 
Learnability 

0.09 (0.34) 
2.12 (1.10) 
6.1 (0.6) 

0.06 (0.24) 
1.75 (0.95) 
6.2 (1.2) 

0.05 (0.21) 
1.81 (0.96) 
6.5 (0.7) 

Comfort 5.3 (1.4) 6.5 (0.7) 6.1 (0.9) 
Usefulness 6.3 (0.6) 6.6 (0.7) 6.5 (0.8) 
Satisfaction 6.2 (0.8) 6.6 (0.7) 6.5 (0.7) 

Preference (S/C) 54% / 46% 38% / 62% 31% / 69% 

Table 4. Results from the 3D-printed accessory study, showing mean and 
standard deviation (in parentheses). 

tence (e.g., I want a large coffee 50-50, shown in Figure 5). 
Note that the task completion time is likely to reduce in prac­
tice, since the agent’s speaking rate is dependent on the users’ 
screen reader setting, and after repeated usage, the users will 
get familiar with the functions. 

Completing Realistic Tasks 
Participants spent an average of 122.3 seconds (SD = 41.9) 
completing the first task, 110.4 seconds (SD = 36.9) for the 
second, the 97.6 seconds (SD = 30.7) for the third, as they got 
familiar with the audio feedback and guidance. The overall 
task completion rate was 94.7%. For five of the tasks, partic­
ipants accidentally selected the wrong option and had to go 
back or start over. Because our smoothing approach requires 
a new state to be seen continuously across multiple frames 
in order to determine a state transition, there may be a delay 
in determining if a button press was successful. In this case, 
some users may accidentally press again at the same location 
triggering an incorrect selection on the next screen state. This 
issue may be alleviated by providing more immediate feed­
back such as a tentative audio confirmation that a button press 
has been successful. 

In subjective ratings, participants found the StateLens iOS ap­
plication to be easy to learn (M = 5.5,SD = 0.9), comfortable 
to use (M = 5.6,SD = 1.2), and very useful (M = 6.1,SD = 
1.1). They felt the audio feedback provided by the app was 
in real-time and accurate (M = 6.1,SD = 0.9). Participants 
mentioned that the head mount can be made more comfortable 
using a lighter setup, e.g., glasses. 

Overall, participants were very excited about the potential 
of StateLens, and felt that it could help them access other 
inaccessible interface in the future (M = 6.6, SD = 0.9): 

“It’ll be a thing, I will actually use it.” – P1 

“[StateLens] gives much more flexibility, so that if the 
machine itself doesn’t have speech, this can cover the 
instances where you have to interact with a touchscreen. 
There are more tools to access them. This combination 
opens up more accessibility. ... I can’t wait to see this in 
action!” – P6 



“I really like the idea of using the phone to make screens 
accessible and give feedback in real time. That’s really 
impressive. I would use it. It would be helpful and useful.” 
– P9 

“I would welcome more opportunities to use interfaces 
with [StateLens], like operating the cable company box. 
It would be great if interfaces could also show up on my 
phone screen and read it to me or let me explore it there.” 
– P12 

A low vision user (P12) mentioned that even though he might 
not always need assistance, if the interface’s contrast or bright­
ness is poor, a system like StateLens would be greatly helpful 
as a confirmation. Furthermore, he would like to get more 
information beyond the text labels on the buttons by using 
StateLens as a cognitive assistant. He would find it useful if, 
for example, a button for a coffee selection labeled “Rainbow’s 
End” could further be described as “a coffee blend containing 
tasting notes of nuts and citrus” even though the display does 
not provide that information. 

DISCUSSION AND FUTURE WORK 
In this section, we discuss how the approaches used in State-
Lens might generalize to extract information from existing 
online videos to, for instance, assist sighted users and con­
struct a queryable map of devices. We also discuss limitations 
of our work, which represent opportunities for future research. 

Technical Approach to Accessibility 
StateLens is not the ideal solution. In a perfect world, post-
hoc fixes like StateLens would not be needed (because all 
technologies would be inherently accessible), but in practice 
access technology like StateLens plays a vital role. Even with 
the existing laws, there are still many cases where “reasonable 
accommodation” is not enough. For example, a vending ma­
chine could be labeled with Braille, but the checkout credit 
card machine is not accessible. StateLens is a stopgap measure 
to make access possible (as are many access technologies), 
and introduces ideas that might find purchase in other access 
and accessible technologies. 

People who are blind were involved throughout the research, 
including several people with visual impairments on our ex­
tended research team, and multiple sessions of design and 
study with a total of 30 outside participants. While we strove 
to make this paper self-contained, it builds on our long his­
tory of work involving thousands of blind people as students, 
researchers, participants, and users. 

Generalizability 
In this paper, we developed a hybrid crowd-computer vision 
system to enable access to dynamic touchscreens in-the-wild. 
One unique contribution of this work is that we demonstrated 
the possibility of extracting state diagrams from existing point­
of-view videos instead of screenshots or screencast videos [2, 
26, 37]. For existing physical devices whose underlying hard­
ware or software cannot be modified, point-of-view videos are 
more prevalent and easier to acquire compared to screencast 
videos, which makes our approach generalizable to a large 
variety of devices and scenarios. 

We motivated our approach as a benefit to improve accessibil­
ity for blind users. However, this approach could be beneficial 
to sighted people and people with cognitive disabilities in 
many ways as well. For example, medical devices can be hard 
to configure, and devices that are in foreign languages are 
hard to operate. Through understanding of the state diagrams 
of devices with readily available or user-taken point-of-view 
videos, our approach can provide additional information to the 
user as they interact with the devices (e.g., augmented reality 
applications for translation services, interactive tutorials). 

Using StateLens, we envision building a queryable map of 
state diagrams for many of the devices in the world using 
existing point-of-view videos that have been shared online. As 
users start to use a device, it can be geo-located, automatically 
recognized, or added into the system. Additional states can 
be added to the existing diagram as users interact with the 
device. Changes to the devices can be automatically detected 
over time to update the interface state diagram. Furthermore, 
similar but slightly different models of a device may reuse 
another state diagram and enable transfer learning. 

Assistive Hardware for Automatic Screen Actuation 
Our 3D-printed accessories elegantly add “risk-free explo­
ration” to existing capacitive touchscreen devices without 
modifying the underlying hardware or software, which has 
been a major hurdle for past efforts. In our user study, we 
discovered issues around holding the accessories in certain 
angles, and “the last meter” problem to accurately activate the 
exact button once. If the screen is cluttered, it could still be 
quite difficult to operate. As future work, we have started to 
design hardware proxies that can locate and actuate external 
touchscreens automatically. Blind users could brush a “phone 
case” on the external touchscreen, then the built-in camera 
would capture, recognize, and instruct actuators contacting the 
external screen to trigger functions at the right place and time. 

Limitations 
As with most systems, StateLens currently has some limita­
tions, which we believe could be explored in future work. For 
instance, StateLens has limited capability in noticing and dif­
ferentiating minor interface changes such as toggle buttons 
or color indicators. One solution may be to detect and factor 
in UI widgets that are expected to change using approaches 
like those in PreFab [12] and TapShoe [32]. Furthermore, 
StateLens cannot currently handle major updates and layout 
changes of the interface, as well as list menus, slide bars or 
other gestures (e.g., scroll, swipe, pinch). 

The completeness of the state diagram is limited by the cov­
erage of the videos collected for the device. Even if videos 
only capture a subset of possible tasks, these would likely be 
frequently used paths of action, thus still providing reasonable 
functionality in many cases. If a blind user needs to access an 
unseen state, StateLens could add it to the state diagram on-
the-fly, asking the user to wait for that screen to be labeled and 
then added to the full state diagram. Other approaches include 
generalizing based on the existing states or other machines, 
and relying more on OCR. 



We evaluated StateLens across a number of touchscreen inter­
faces and with blind users in the lab, but we did not deeply 
study how StateLens works in the real world, which is often 
much more complicated and messier than in-lab studies. Our 
next step is to harden our implementation to scale to many 
users, and deploy it to understand how it performs in the ev­
eryday lives of blind people. 

CONCLUSION 
We have presented StateLens, a reverse engineering solution 
that makes existing dynamic touchscreens accessible. Using a 
hybrid crowd-computer vision pipeline, StateLens generates 
state diagrams about interface structures from point-of-view 
usage videos. Through these state diagrams, StateLens pro­
vides interactive feedback and guidance to help blind users 
prespecify task and access the touchscreen interfaces. A set 
of 3D-printed accessories enable capacitive touchscreens to 
be used non-visually by preventing accidental touches on the 
interface. Our formative study identified challenges and re­
quirements, which informed the design and architecture of 
StateLens. Our evaluations demonstrated the feasibility of 
StateLens in accurately reconstructing the state diagram, iden­
tifying interface states, and giving effective feedback and guid­
ance. More generally, StateLens demonstrates the value in a 
hybrid, reciprocal relationship between humans and AI to col­
laboratively solve real-world, real-time accessibility problems. 
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